DOI QR코드

DOI QR Code

Synthesis and Characterizations of Bis-Spiropyran Derivatives

  • Lee, Sungmin (Department of Chemistry, Research Institute for Natural Sciences, and Institute of Nano Science and Technology) ;
  • Ji, Seungwook (Department of Chemistry, Research Institute for Natural Sciences, and Institute of Nano Science and Technology) ;
  • Kang, Youngjong (Department of Chemistry, Research Institute for Natural Sciences, and Institute of Nano Science and Technology)
  • Received : 2012.06.27
  • Accepted : 2012.08.24
  • Published : 2012.11.20

Abstract

We synthesized three different derivatives of bis-spiropyran using simple organic reactions with high yields. BSP1, a derivative of bis-spiropyran having a connection at the position 6' and BSP2, a derivative of bis-spiropyran having a connection at the position 5 and BSP3, a derivative of bis-spiropyran containing a dithienylethene group between two spiropyran moieties were synthesized. The optical properties of BSPs were characterized. UV-Vis spectra showed that BSPs exhibit reversible photo-isomerization and the efficiency of photo-isomerization is highly dependent on the position of nitro group. BSPs having nitro group at para position of hydroxy group showed the higher efficiency of photo-isomerization that the one having nitro group at ortho position. The optical microscope images obtained under ultraviolet or visible light exposure demonstrated that the formation of nanorods can be reversibly controlled by optical signal.

Keywords

References

  1. Brown, G. H. Photochromism; Wiley Interscience: New York, 1971.
  2. Durr, H.; Bouas-Laurent, H. Photochromism: Molecules and Systems; Elsevier Science: Amsterdam, 2003
  3. Berkovic, G.; Krongauz, V.; Weiss, V. Chem. Rev. 2000, 100, 1741. https://doi.org/10.1021/cr9800715
  4. Davis, D. A.; Hamilton, A.; Yang, J.; Cremar, L. D.; Van Gough, D.; Potisek, S. L.; Ong, M. T.; Braun, P. V.; Martínez, T. J.; White, S. R. Nature 2009, 459, 68. https://doi.org/10.1038/nature07970
  5. Evans, R. A.; Hanley, T. L.; Skidmore, M. A.; Davis, T. P.; Such, G. K.; Yee, L. H.; Ball, G. E.; Lewis, D. A. Nat. Mater. 2005, 4, 249. https://doi.org/10.1038/nmat1326
  6. Tork, A.; Boudreault, F.; Roberge, M.; Ritcey, A. M.; Lessard, R. A.; Galstian, T. V. Appl. Opt. 2001, 40, 1180. https://doi.org/10.1364/AO.40.001180
  7. Such, G.; Evans, R. A.; Yee, L. H.; Davis, T. P. J. Macromol. Sci., Polym. Rev. 2003, 43, 547. https://doi.org/10.1081/MC-120025978
  8. Menju, A.; Hayashi, K.; Irie, M. Macromolecules 1981, 14, 755. https://doi.org/10.1021/ma50004a055
  9. Konak, C.; Rathi, R. C.; Kopecková, P.; Kopecek, J. Macromolecules 1997, 30, 5553. https://doi.org/10.1021/ma970499q
  10. Suzuki, T.; Kawata, Y.; Kahata, S.; Kato, T. Chem. Commun. 2003, 2004.
  11. Suzuki, T.; Kato, T.; Shinozaki, H. Chem. Commun. 2004, 2036.
  12. Zhu, M. Q.; Zhu, L.; Han, J. J.; Wu, W.; Hurst, J. K.; Li, A. D. Q. J. Am. Chem. Soc. 2006, 128, 4303. https://doi.org/10.1021/ja0567642
  13. Fries, K.; Samanta, S.; Orski, S.; Locklin, J. Chem. Commun. 2008, 6288.
  14. Fries, K. H.; Driskell, J. D.; Samanta, S.; Locklin, J. Anal. Chem. 2010, 82, 3306. https://doi.org/10.1021/ac1001004
  15. Suzuki, T.; Hirahara, Y.; Bunya, K.; Shinozaki, H. J. Mater. Chem. 2010, 20, 2773. https://doi.org/10.1039/b921169a
  16. Keum, S. R.; Lee, J. H.; Seok, M. K.; Yoon, C. M. Bull. Korean Chem. Soc. 1994, 15, 275.
  17. Keum, S. R.; Lee, J. H.; Seok, M. K. Dyes Pigm. 1994, 25, 21. https://doi.org/10.1016/0143-7208(94)80015-4
  18. Keum, S. R.; Lim, S. S.; Min, B. H.; Kazmaier, P. M.; Buncel, E. Dyes Pigm. 1996, 30, 225. https://doi.org/10.1016/0143-7208(95)00078-X
  19. Keum, S. R.; Choi, Y. K.; Kim, S. H.; Yoon, C. M. Dyes Pigm. 1999, 41, 41. https://doi.org/10.1016/S0143-7208(98)00060-6
  20. Cho, Y. J.; Rho, K. Y.; Kim, S. H.; Keum, S. R.; Yoon, C. M. Dyes Pigm. 1999, 44, 19. https://doi.org/10.1016/S0143-7208(99)00067-4
  21. Keum, S. R.; Choi, Y. K.; Lee, M. J.; Kim, S. H. Dyes Pigm. 2001, 50, 171. https://doi.org/10.1016/S0143-7208(01)00052-3
  22. Fukushima, K.; Vandenbos, A. J.; Fujiwara, T. Chem. Mater. 2007, 19, 644. https://doi.org/10.1021/cm061968i
  23. Shao, N.; Jin, J.; Wang, H.; Zheng, J.; Yang, R.; Chan, W.; Abliz, Z. J. Am. Chem. Soc. 2009, 132, 725.
  24. Liu, H. B.; Wang, M.; Wang, Y.; Wang, L.; Sun, L. C. Synth. Commun. 2010, 40, 1074. https://doi.org/10.1080/00397910903040252
  25. Klotz, E. J. F.; Claridge, T. D. W.; Anderson, H. L. J. Am. Chem. Soc. 2006, 128, 15374. https://doi.org/10.1021/ja0665139
  26. Osuka, A.; Fujikane, D.; Shinmori, H.; Kobatake, S.; Irie, M. J. Org. Chem. 2001, 66, 3913. https://doi.org/10.1021/jo010001p
  27. Lee, P. H.; Seomoon, D.; Lee, K. Org. Lett. 2005, 7, 343. https://doi.org/10.1021/ol047567v
  28. Lee, K.; Lee, P. H. Tetrahedron Lett. 2008, 49, 4302. https://doi.org/10.1016/j.tetlet.2008.04.123
  29. Keum, S. R.; Hur, M. S.; Kazmaier, P. M.; Buncel, E. Can. J. Chem. 1991, 69, 1940. https://doi.org/10.1139/v91-279
  30. Uznanski, P. Langmuir 2003, 19, 1919. https://doi.org/10.1021/la026973p

Cited by

  1. Multiphotochromic molecular systems vol.44, pp.11, 2015, https://doi.org/10.1039/C5CS00137D
  2. Reverse Photochromism of Nitrosubstituted Bisspiropyran Based on Benzopyrroloindole vol.53, pp.1, 2012, https://doi.org/10.1134/s0018143919010089
  3. 3,3,3′,3′-Tetramethyl-2,2′-diphenyl-3H,3′H-5,5′-biindole vol.2020, pp.3, 2012, https://doi.org/10.3390/m1146
  4. Synthesis and study of new photochromic unsymmetrical bis-spiropyrans with nonequivalent heteroarene fragments conjugated through the common 2H,8H-pyrano[2,3-f]chromene moiety vol.1221, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2020.128808