DOI QR코드

DOI QR Code

Fabrication and Manipulation of Gold 1D Chain Assemblies Using Magnetically Controllable Gold Nanoparticles

  • Kim, Lily Nari (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Kim, Eun-Geun (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Kim, Junhoi (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Choi, Sung-Eun (School of Electrical Engineering and Computer Science, Seoul National University) ;
  • Park, Wook (Department of Electronics and Radio Engineering, Institute for Laser Engineering, Kyung Hee University) ;
  • Kwon, Sunghoon (School of Electrical Engineering and Computer Science, Seoul National University)
  • Received : 2012.07.25
  • Accepted : 2012.08.30
  • Published : 2012.11.20

Abstract

We have developed magnetically controllable gold nanoparticles by synthesizing superparamagnetic $Fe_3O_4$ core/gold shell nanoparticles. The core/shell particles have the capability of forming gold 1D chains in the presence of an external magnetic field. Here we demonstrate dynamic and reversible self-assembly of the gold 1D chain structures in an aqueous solution without any templates or physical or chemical attachment. The spatial configuration of gold chains can be arbitrarily manipulated by controlling the direction of a magnetic field. This technique can provide arbitrary manipulation of gold 1D chains for fabrication purpose. To demonstrate this capability, we present a technique for immobilization of the gold particle chains on a glass substrate.

Keywords

References

  1. Sonnichsen, C.; Reinhard, B. M.; Liphardt, J.; Alivisatos, A. P. Nat. Biotechnol. 2005, 23, 741. https://doi.org/10.1038/nbt1100
  2. Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. Science 2003, 302, 419. https://doi.org/10.1126/science.1089171
  3. Shi, W. L.; Sahoo, Y.; Swihart, M. T.; Prasad, P. N. Langmuir 2005, 21, 1610. https://doi.org/10.1021/la047628y
  4. Liu, G. L.; Yin, Y. D.; Kunchakarra, S.; Mukherjee, B.; Gerion, D.; Jett, S. D.; Bear, D. G.; Gray, J. W.; Alivisatos, A. P.; Lee, L. P.; Chen, F. Q. F. Nat. Nanotechnol. 2006, 1, 47. https://doi.org/10.1038/nnano.2006.51
  5. Reinhard, B. M.; Sheikholeslami, S.; Mastroianni, A.; Alivisatos, A. P.; Liphardt, J. P Natl. Acad Sci. USA 2007, 104, 2667. https://doi.org/10.1073/pnas.0607826104
  6. Hayward, R. C.; Saville, D. A.; Aksay, I. A. Nature 2000, 404, 56. https://doi.org/10.1038/35003530
  7. Talley, C. E.; Jackson, J. B.; Oubre, C.; Grady, N. K.; Hollars, C. W.; Lane, S. M.; Huser, T. R.; Nordlander, P.; Halas, N. J. Nano Lett. 2005, 5, 1569. https://doi.org/10.1021/nl050928v
  8. Gu, G. H.; Suh, J. S. J. Phys. Chem. C 2010, 114, 7258. https://doi.org/10.1021/jp100207r
  9. Tabor, C.; Murali, R.; Mahmoud, M.; El-Sayed, M. A. J. Phys. Chem. A 2009, 113, 1946. https://doi.org/10.1021/jp807904s
  10. Kim, S.; Shuford, K. L.; Bok, H. M.; Kim, S. K.; Park, S. Nano Lett. 2008, 8, 800. https://doi.org/10.1021/nl0726353
  11. Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Requicha, A. A. G. Nat. Mater. 2003, 2, 229. https://doi.org/10.1038/nmat852
  12. Hu, M. S.; Chen, H. L.; Shen, C. H.; Hong, L. S.; Huang, B. R.; Chen, K. H.; Chen, L. C. Nat. Mater. 2006, 5, 102. https://doi.org/10.1038/nmat1564
  13. Simon, U. Adv. Mater. 1998, 10, 1487. https://doi.org/10.1002/(SICI)1521-4095(199812)10:17<1487::AID-ADMA1487>3.0.CO;2-W
  14. Burkett, S. L.; Mann, S. Chem. Commun. 1996, 321.
  15. Meister, A.; Drescher, S.; Mey, I.; Wahab, M.; Graf, G.; Garamus, V. M.; Hause, G.; Mogel, H. J.; Janshoff, A.; Dobner, B.; Blume, A. J. Phys. Chem. B 2008, 112, 4506. https://doi.org/10.1021/jp710119j
  16. Sardar, R.; Shumaker-Parry, J. S. Nano Lett. 2008, 8, 731. https://doi.org/10.1021/nl073154m
  17. Warner, M. G.; Hutchison, J. E. Nat. Mater. 2003, 2, 272. https://doi.org/10.1038/nmat853
  18. Gao, X. Y.; Djalali, R.; Haboosheh, A.; Samson, J.; Nuraje, N.; Matsui, H. Adv. Mater. 2005, 17, 1753. https://doi.org/10.1002/adma.200500357
  19. Ellis, A. V.; Vjayamohanan, K.; Goswaimi, R.; Chakrapani, N.; Ramanathan, L. S.; Ajayan, P. M.; Ramanath, G. Nano Lett. 2003, 3, 279. https://doi.org/10.1021/nl025824o
  20. Lalatonne, Y.; Richardi, J.; Pileni, M. P. Nat. Mater. 2004, 3, 121. https://doi.org/10.1038/nmat1054
  21. Hermanson, K. D.; Lumsdon, S. O.; Williams, J. P.; Kaler, E. W.; Velev, O. D. Science 2001, 294, 1082. https://doi.org/10.1126/science.1063821
  22. Vernhes, M. C.; Cabanes, P. A.; Teissie, J. Bioelectroch. Bioener. 1999, 48, 17. https://doi.org/10.1016/S0302-4598(98)00239-6
  23. Spasova, M.; Salgueirino-Maceira, V.; Schlachter, A.; Hilgendorff, M.; Giersig, M.; Liz-Marzan, L. M.; Farle, M. J. Mater. Chem. 2005, 15, 2095. https://doi.org/10.1039/b502065d
  24. Kim, H.; Ge, J.; Kim, J.; Choi, S.; Lee, H.; Lee, H.; Park, W.; Yin, Y.; Kwon, S. Nat. Photonics 2009, 3, 534. https://doi.org/10.1038/nphoton.2009.141
  25. Lee, H.; Kim, J.; Kim, H.; Kim, J.; Kwon, S. Nat. Materials 2010, 9, 745. https://doi.org/10.1038/nmat2815
  26. Ge, J. P.; Lee, H.; He, L.; Kim, J.; Lu, Z. D.; Kim, H.; Goebl, J.; Kwon, S.; Yin, Y. D. J. Am. Chem. Soc. 2009, 131, 15687. https://doi.org/10.1021/ja903626h
  27. Ge, J. P.; He, L.; Goebl, J.; Yin, Y. D. J. Am. Chem. Soc. 2009, 131, 3484. https://doi.org/10.1021/ja809772v
  28. Ge, J. P.; Yin, Y. D. Adv. Mater. 2008, 20, 3485. https://doi.org/10.1002/adma.200800657
  29. Brinson, B. E.; Lassiter, J. B.; Levin, C. S.; Bardhan, R.; Mirin, N.; Halas, N. J. Langmuir 2008, 24, 14166. https://doi.org/10.1021/la802049p
  30. Yong, K. T.; Sahoo, Y.; Swihart, M. T.; Prasad, P. N. Colloid Surface A 2006, 290, 89. https://doi.org/10.1016/j.colsurfa.2006.05.004
  31. Lim, J.; Eggeman, A.; Lanni, F.; Tilton, R. D.; Majetich, S. A. Adv. Mater. 2008, 20, 1721. https://doi.org/10.1002/adma.200702196
  32. Zheng, J. W.; Zhu, Z. H.; Chen, H. F.; Liu, Z. F. Langmuir 2000, 16, 4409. https://doi.org/10.1021/la991332o

Cited by

  1. Survey of Plasmonic Nanoparticles: From Synthesis to Application vol.31, pp.7, 2014, https://doi.org/10.1002/ppsc.201300309
  2. Self-assembled plasmonic nanostructures vol.43, pp.11, 2014, https://doi.org/10.1039/c3cs60341e
  3. Magnetic field-directed self-assembly of magnetic nanoparticles vol.38, pp.11, 2012, https://doi.org/10.1557/mrs.2013.233
  4. Nanoparticles Enhanced Self-Driven Microfludic Biosensor vol.11, pp.4, 2012, https://doi.org/10.3390/mi11040350