DOI QR코드

DOI QR Code

Structural Transcription of Organogels to Mesoporous Silicas: A Chain-length Dependent Morphology and Pore Texture

  • Huang, Yaqun (College of Chemistry and Molecular Science, Wuhan University)
  • Received : 2012.07.01
  • Accepted : 2012.08.17
  • Published : 2012.11.20

Abstract

Here, we report a chain-length dependent morphology and pore structure tailing of mesoporous silica templated from organogels, which is formed by primary alkylamine and ethylene glycol at room temperature. As the chain length of alkylamine changes from 12 to 18, the resulted materials exhibit a morphology change from layers to spheres and platelets, respectively. SEM and TEM observation revealed that these shapes appear to be inherited from their parent organogels. Further pore structure characterization by nitrogen sorption analysis demonstrates that all the resulted silicas exhibit typical IV isotherms indicative of uniform mesopores, and their pore sizes are dependent on the chain length of alkylamine used.

Keywords

References

  1. Kresge, C. T.; Leonwicz, M. E.; Roth, W. J.; Vartulli, J. C.; Beck, J. S. Nature 1992, 359, 710. https://doi.org/10.1038/359710a0
  2. Heravi, M. M.; Baghernejad, B.; Oskooie, H. A.; Malakooti, R. J. Korean Chem. Soc. 2008, 52, 593. https://doi.org/10.5012/jkcs.2008.52.5.593
  3. Pauly, T. R.; Liu, Y.; Pinnavaia, T. J.; Billinge, S. J. L.; Ricker, T. P. J. Am. Chem. Soc. 1999, 121, 8835. https://doi.org/10.1021/ja991400t
  4. Che, S.; Garcia-Bennett, A. E.; Yokoi, T.; Sakamoto, K.; Kunieda, H.; Terasaki, O.; Tatsumi, T. Nature Materials 2003, 2, 801. https://doi.org/10.1038/nmat1022
  5. Park, D. H.; Cheng, C. F.; Klinowski, J. Bull. Korean Chem. Soc. 1997, 18, 379.
  6. Tanev, P. T.; Pinnavaia, T. J. Science 1995, 267, 865. https://doi.org/10.1126/science.267.5199.865
  7. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548. https://doi.org/10.1126/science.279.5350.548
  8. Terech, P.; Weiss, R. G. Chem. Rev. 1997, 97, 3133. https://doi.org/10.1021/cr9700282
  9. Abdallah, D. J.; Weiss, R.G. Adv. Mater. 2000, 12, 1237. https://doi.org/10.1002/1521-4095(200009)12:17<1237::AID-ADMA1237>3.0.CO;2-B
  10. Gronwald, O.; Snip, E.; Shinkai, S. Curr. Opin. Colloid Interface Sci. 2002, 7, 148. https://doi.org/10.1016/S1359-0294(02)00016-X
  11. Ishi-I, T.; Shinkai, S. Top. Curr. Chem. 2005, 258, 119. https://doi.org/10.1007/b135554
  12. George, M.; Weiss, R. G. Acc. Chem. Res. 2006, 39, 489. https://doi.org/10.1021/ar0500923
  13. Ajayaghosh, A.; Praveen, V. K. Acc. Chem. Res. 2007, 40, 644. https://doi.org/10.1021/ar7000364
  14. Ono, Y.; Nakashima, K.; Sano, M.; Kanekiyo, Y.; Inoue, K.; Shinkai, S.; Sano, M.; Hojo, J. Chem. Commun. 1998, 34, 1477.
  15. Ono, Y.; Nakashima, K.; Sano, M.; Hojo, J.; Shinkai, S. J. Mater. Chem. 2001, 11, 2282. https://doi.org/10.1039/b102448p
  16. Jung, J. H.; Ono, Y.; Shinkai, S. J. Chem. Soc., Perkin Trans. 1999, 2, 1289.
  17. Jung, J. H.; Ono, Y.; Shinkai, S. Langmuir 2000, 16, 1643. https://doi.org/10.1021/la990901p
  18. Jung, J. H.; Kobayashi, H.; Masuda, M.; Shimizu, T.; Shinkai, S. J. Am. Chem. Soc. 2001, 123, 8785. https://doi.org/10.1021/ja010508h
  19. Huang, X.; Weiss, R. G. Langmuir 2006, 22, 8542. https://doi.org/10.1021/la0610250
  20. Huang, X.; Weiss, R. G. Tetrahedron 2007, 63, 7375. https://doi.org/10.1016/j.tet.2007.02.008
  21. Clavier, G. M.; Pozzo, J. L.; Bouas-Laurent, H.; Liere, C.; Roux C.; Sanchez, C. J. Mater. Chem. 2000, 10, 1725. https://doi.org/10.1039/b000525h
  22. Llusar, M.; Monrós, G.; Roux, C.; Pozzoc, J. L.; Sanchez, C. J. Mater. Chem. 2003, 13, 2505. https://doi.org/10.1039/b304479n
  23. Yang, Y. G.; Suzuki, M.; Fukui, H.; Shirai, H.; Hanabusa, K. Chem. Mater. 2006, 18, 1324. https://doi.org/10.1021/cm0519030
  24. Yang, Y. G.; Suzuki, M.; Owa, S.; Shirai, H.; Hanabusa, K. J. Am. Chem. Soc. 2007, 129, 581. https://doi.org/10.1021/ja064240b
  25. Li, B. Z.; Chen, Y. L.; Zhao, H. Y.; Pei, X. F.; Bi, L. F.; Hanabusa, K.; Yang, Y. G. Chem. Commun. 2008, 44, 6366.
  26. George, M.; Weiss, R. G. Langmuir 2002, 18, 7124. https://doi.org/10.1021/la0255424
  27. Huang, Y. Q.; Lin, Y.; Zeng, G. P.; Liang, Z. X.; Liu, X. L.; Hong, X. L.; Zhang, G. Y.; Tsang, S. C. J. Mater. Chem. 2008, 18, 5445. https://doi.org/10.1039/b814776k
  28. Huang, Y. Q.; Liao, F. L.; Zheng, W. R.; Liu, X. L.; Wu, X. J.; Hong, X. L.; Tsang, S. C. Langmuir 2010, 26, 3106. https://doi.org/10.1021/la904264u
  29. Lescanne, M.; Grondin, P.; dÁleo, A.; Fages, F.; Pozzo, J. L.; Monval, O. M.; Reinheimer, P.; Colin, A. Langmuir 2004, 20, 3032. https://doi.org/10.1021/la035219g
  30. Huang, X.; Terech, P.; Raghavan, S. R.; Weiss, R. G. J. Am. Chem. Soc. 2005, 127, 4336. https://doi.org/10.1021/ja0426544
  31. Polarz, S.; Regenspurger, R.; Hartmann, J. Angew. Chem. Int. Ed. 2007, 46, 2426. https://doi.org/10.1002/anie.200602262

Cited by

  1. Heat‐Induced Supramolecular Organogels Composed of α‐Cyclodextrin and “Jellyfish‐Like” β‐Cyclodextrin–Poly(ε‐caprolactone) vol.51, pp.22, 2012, https://doi.org/10.1002/polb.23372