DOI QR코드

DOI QR Code

Synthesis and Evaluation of Oleanolic Acid-Conjugated Lactoferrin for β-Amyloid Plaque Imaging

  • Kim, Sung-Min (Division of Magnetic Resonance Research, Korea Basic Science Institute) ;
  • Kim, Dongkyu (Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF)) ;
  • Chae, Min Kyung (Division of Magnetic Resonance Research, Korea Basic Science Institute) ;
  • Jeong, Il-Ha (Division of Magnetic Resonance Research, Korea Basic Science Institute) ;
  • Cho, Jee-Hyun (Division of Magnetic Resonance Research, Korea Basic Science Institute) ;
  • Choi, Naeun (Division of Magnetic Resonance Research, Korea Basic Science Institute) ;
  • Lee, Kyo Chul (Molecular Imaging Research Center, Research Institute of Radiological & Medical Science, Korea Institute of Radiological & Medical Science (KIRAMS)) ;
  • Lee, Chulhyun (Division of Magnetic Resonance Research, Korea Basic Science Institute) ;
  • Ryu, Eun Kyoung (Division of Magnetic Resonance Research, Korea Basic Science Institute)
  • Received : 2012.06.30
  • Accepted : 2012.08.13
  • Published : 2012.11.20

Abstract

${\beta}$-Amyloid accumulation in the brain is a pathological hallmark of Alzheimer's disease (AD). Since early detection of ${\beta}$-amyloid may facilitate more successful and timely therapeutic interventions, many investigators have focused on developing AD diagnostic reagents that can penetrate the blood-brain barrier (BBB). Oleanolic acid (OA) is a substance found in a variety of plants that has been reported to prevent the progression of AD in mice. In this study, we synthesized and evaluated a new radioligand in which OA was conjugated to lactoferrin (Lf, an iron-binding glycoprotein that crosses the BBB) for the diagnosis of AD. In an in vitro study in which OA-Lf was incubated with ${\beta}$-amyloid (1-42) aggregates for 24 h, we found that OA-Lf effectively inhibited ${\beta}$-amyloid aggregation and fibril formation. In vivo studies demonstrated that $^{123}I$-OA-Lf brain uptake was higher than$^{123}I$-Lf uptake. Therefore, radiolabeled OA-Lf may have diagnostic potential for ${\beta}$-amyloid imaging.

Keywords

References

  1. Hebert, L. E.; Scherr, P. A.; Beckett, L. A.; Albert, M. S.; Pilgrim, D. M.; Chown, M. J.; Funkenstein, H. H.; Evans, D. A. JAMA 1995, 273, 1354. https://doi.org/10.1001/jama.1995.03520410048025
  2. Kawas, C.; Gray, S.; Brookmeyer, R.; Fozard, J.; Zonderman, A. Neurology 2000, 54, 2072. https://doi.org/10.1212/WNL.54.11.2072
  3. Lee, V. M.; Trojanowski, J. Q. Neuron 1999, 24, 507. https://doi.org/10.1016/S0896-6273(00)81106-X
  4. Selkoe, D. J. JAMA 2000, 283, 1615. https://doi.org/10.1001/jama.283.12.1615
  5. Vickers, J. C.; Dickson, T. C.; Adlard, P. A.; Saunders, H. L.; King, C. E.; McCormack, G. Prog. Neurobiol. 2000, 60, 139. https://doi.org/10.1016/S0301-0082(99)00023-4
  6. Zhuang, Z. P.; Kung, M. P.; Hou, C.; Skovronsky, D. M.; Gur, T. L.; Plossl, K.; Trojanowski, J. Q.; Lee, V. M.; Kung, H. F. J. Med. Chem. 2001, 44, 1905. https://doi.org/10.1021/jm010045q
  7. Agdeppa, E. D.; Kepe, V.; Liu, J.; Flores-Torres, S.; Satyamurthy, N.; Petric, A.; Cole, G. M.; Small, G. W.; Huang, S. C.; Barrio, J. R. J. Neurosci. 2001, 21, RC189.
  8. Klunk, W. E.; Engler, H.; Nordberg, A.; Wang, Y.; Blomqvist, G.; Holt, D. P.; Bergstrom, M.; Savitcheva, I.; Huang, G. F.; Estrada, S.; Ausen, B.; Debnath, M. L.; Barletta, J.; Price, J. C.; Sandell, J.; Lopresti, B. J.; Wall, A.; Koivisto, P.; Antoni, G.; Mathis, C. A.; Langstrom, B. Ann. Neurol. 2004, 55, 306. https://doi.org/10.1002/ana.20009
  9. Zhou, R.; Zhang, Z.; Zhao, L.; Jia, C.; Xu, S.; Mai, Q.; Lu, M.; Huang, M.; Wang, L.; Wang, X.; Jin, D.; Bai, X. J. Orthop. Res. 2011, 29, 846. https://doi.org/10.1002/jor.21311
  10. Yoo, K. Y.; Park, S. Y. Molecules 2012, 17, 3524. https://doi.org/10.3390/molecules17033524
  11. Cho, S. O.; Ban, J. Y.; Kim, J. Y.; Jeong, H. Y.; Lee, I. S.; Song, K. S.; Bae, K.; Seong, Y. H. J. Pharmacol. Sci. 2009, 111, 22. https://doi.org/10.1254/jphs.08271FP
  12. LeVine, H., 3rd; Protein. Sci. 1993, 2, 404.
  13. Wong, C. W.; Quaranta, V.; Glenner, G. G. Proc. Natl. Acad Sci. U S A 1985, 82, 8729 https://doi.org/10.1073/pnas.82.24.8729
  14. Ji, B.; Maeda, J.; Higuchi, M.; Inoue, K.; Akita, H.; Harashima, H.; Suhara, T. Life Sci. 2006, 78, 851. https://doi.org/10.1016/j.lfs.2005.05.085
  15. Fillebeen, C.; Descamps, L.; Dehouck, M. P.; Fenart, L.; Benaissa, M.; Spik, G.; Cecchelli, R.; Pierce, A. J. Biol. Chem. 1999, 274, 7011. https://doi.org/10.1074/jbc.274.11.7011
  16. Hu, K.; Li, J.; Shen, Y.; Lu, W.; Gao, X.; Zhang, Q.; Jiang, X. J. Control. Release 2009, 134, 55. https://doi.org/10.1016/j.jconrel.2008.10.016
  17. Xie, H.; Zhu, Y.; Jiang, W.; Zhou, Q.; Yang, H.; Gu, N.; Zhang, Y.; Xu, H.; Yang, X. Biomaterials 2011, 32, 495. https://doi.org/10.1016/j.biomaterials.2010.09.024
  18. Kersemans, V.; Cornelissen, B.; Kersemans, K.; Bauwens, M.; Achten, E.; Dierckx, R. A.; Mertens, J.; Slegers, G. J. Nucl. Med. 2005, 46, 532.
  19. Klunk, W. E.; Jacob, R. F.; Mason, R. P. Anal. Biochem. 1999, 266, 66. https://doi.org/10.1006/abio.1998.2933
  20. Klunk, W. E.; Wang, Y.; Huang, G. F.; Debnath, M. L.; Holt, D. P.; Mathis, C. A. Life Sci. 2001, 69, 1471. https://doi.org/10.1016/S0024-3205(01)01232-2