DOI QR코드

DOI QR Code

Comparison of Chemical Compositions of Size-segregated Atmospheric Aerosols between Asian Dust and Non-Asian Dust Periods at Background Area of Korea

  • Kim, Won-Hyung (Department of Chemistry, Jeju National University) ;
  • Song, Jung-Min (Department of Chemistry, Jeju National University) ;
  • Ko, Hee-Jung (Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science) ;
  • Kim, Jin Seog (Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science) ;
  • Lee, Joung Hae (Department of Chemistry, Jeju National University) ;
  • Kang, Chang-Hee (Department of Chemistry, Jeju National University)
  • Received : 2011.12.22
  • Accepted : 2012.08.09
  • Published : 2012.11.20

Abstract

The size-segregated atmospheric aerosols have been collected at 1100 m site of Mt. Halla in Jeju, a background area in Korea, using 8-stage cascade impact air sampler during Asian dust and non-Asian dust storm periods. Their ionic and elemental species were analyzed, in order to examine the pollution characteristics and composition change between Asian dust and non-Asian dust periods. The major ionic species such as nss-$SO_4{^{2-}}$, $NH_4{^+}$, and $K^+$ were predominantly distributed in the fine particles (below $2.1{\mu}m$ diameter), and besides the $NO_3{^-}$ was distributed more in coarse particle fraction than fine particle. On the other hand, the typical soil and marine species i.e., nss-$Ca^{2+}$, $Na^+$, $Cl^-$, and $Mg^{2+}$, were mostly existed in the coarse particles (over $2.1{\mu}m$ diameter). As well in the elemental analysis of aerosols, the major soil-originated Al, Fe, Ca, and others showed prominently high concentrations in the coarse particle fraction, whereas the anthropogenic S and Pb were relatively high in the fine particle fraction. From the comparison of aerosol compositions between Asian dust and non-Asian dust periods, the concentrations of the soil-originated species such as nss-$Ca^{2+}$, Al, Ca, Fe, Ti, Mn, Ba, Sr have increased as 2.7-4.2 times during the Asian dust periods. Meanwhile the concentrations of nss-$SO_4{^{2-}}$ and $NO_3{^-}$ have increased as 1.4 and 2.0 times, and on the contrary $NH_4{^+}$ concentrations have a little bit decreased during the Asian dust periods. Especially the concentrations of both soil-originated ionic and elemental species increased noticeably in the coarse particle mode during the dust storm periods.

Keywords

References

  1. Park, S. H.; Song, C. B.; Kim, M. C.; Kwon, S. B.; Lee, K. W. Environ. Monit. Assess. 2004, 93, 157. https://doi.org/10.1023/B:EMAS.0000016805.04194.56
  2. Kim, S. C.; Kang, D. S.; Cha, Y. H. Kor. J. Env. Hlth. Soc. 2000, 26(2), 108.
  3. Lighty, J. S.; Veranth, J. M.; Sarofim, A. F. J. Air waste Manag. Assoc. 2000, 50, 1565. https://doi.org/10.1080/10473289.2000.10464197
  4. Merrill, J. T.; Uematsu, M.; Bleck, R. J. Geophys. Res. 1989, 94, 8584. https://doi.org/10.1029/JD094iD06p08584
  5. Zhang, X. Y.; Arimoto, R.; Zhu, G. H.; Chen, T.; Zhang, G. Y. Tellus, Ser. B 1998, 50, 317. https://doi.org/10.1034/j.1600-0889.1998.t01-3-00001.x
  6. Duce, R. A.; Unni, C. K.; Ray, B. J.; Prospero, J. M.; Merrill, J. T. Science 1980, 209, 1522. https://doi.org/10.1126/science.209.4464.1522
  7. Husar, R. B., et al., J. Geophys. Res. 2001, 106, 18,317.
  8. Uematsu, M.; Duce, R. A.; Prospero, J. M.; Chen, L.; Merrill, J. T.; McDonald, R. L. J. Geophys. Res. 1983, 88, 5343. https://doi.org/10.1029/JC088iC09p05343
  9. Uno, I.; Amano, H.; Emori, S.; Kinoshita, N.; Matsu, I.; Sugimoto, N. J. Geophys. Res. 2001, 106, 18,331. https://doi.org/10.1029/2000JD900748
  10. Zhao, T. L.; Gong, S. L.; Zhang, X. Y.; McKendry, I. G. J. Geophys. Res. 2003, 108, 8665. https://doi.org/10.1029/2002JD003363
  11. Kim, Y. J.; Woo, J. H.; Ma, Y. I.; Kim, S. H.; Nam, J. S.; Sung, H. K.; Choi, K. C.; Seo, J. H.; Kim, J. S.; Kang, C. H.; Lee, G. W.; Ro, C. U.; Chang, D.; Sunwoo, Y. Atmos. Environ. 2009, 43, 5443. https://doi.org/10.1016/j.atmosenv.2009.07.031
  12. Kim, J. Y.; Yoon, S. C.; Jefferson, A.; Zahorowski, W.; Kang, C. H. Atmos. Environ. 2005, 39, 6513. https://doi.org/10.1016/j.atmosenv.2005.07.021
  13. Arimoto, R.; Zhang, X. Y.; Huebert, B. J.; Kang, C. H.; Savoie, D. L.; Prospero, J. M.; Sage, S. K.; Schloesslin, C. A.; Khaing, H. M.; Oh, S. N. J. Geophys. Res. 2004, 109, 1.
  14. Park M. H.; Kim, Y. P.; Kang, C. H.; Shim, S. G. J. Geophys. Res. 2004, 109, 1.
  15. Zhang, M.; Uno, I.; Yoshida, Y.; Xu, Y.; Wang, Z.; Akimoto, H.; Bates, T.; Quinn, T.; Bandy, A.; Blomquist, B. Atmos. Environ. 2004, 38, 6947. https://doi.org/10.1016/j.atmosenv.2004.02.073
  16. Carmichael, G. R.; Hong, M. S.; Ueda, H.; Chen, L. L.; Murano, K.; Park, J. K.; Lee, H.; Kim, Y.; Kang, C.; Shim, S. J. Geophys. Res. 1997, 102, 6047. https://doi.org/10.1029/96JD02961
  17. Chen, L. L.; Carmichael, G. R.; Hong, M. S.; Ueda, H.; Shim, S.; Song, C. H.; Kim, Y. P.; Arimoto, R.; Prospero, J.; Savoie, D.; Murano, K.; Park, J. K.; Lee, H. G.; Kang. C. J. Geophys. Res. 1997, 102, 28551. https://doi.org/10.1029/97JD01431
  18. Kim, W. H.; Kang, C. H.; Shin, C. S.; Ko, S. Y.; Hong, M. S. Korean J. of Atmos. Environ. 2003, 19, 145.
  19. Kang, C. H.; Kim, W. H.; Ko, H. J.; Hong, S. B. Atmos. Res. 2009, 94, 345. https://doi.org/10.1016/j.atmosres.2009.06.013
  20. Hong, S. B.; Kim, W. H.; Ko, H. J.; Lee, S. B.; Lee, D. E.; Kang, C. H. Atmos. Res. 2011, 101, 427. https://doi.org/10.1016/j.atmosres.2011.04.001
  21. Kang, C. H.; Kim, W. H.; Lee, W. Bull. Korean Chem. Soc. 2003, 24, 363. https://doi.org/10.5012/bkcs.2003.24.3.363
  22. Ro, C. U.; Oh, K. Y.; Kim, H. K.; Kim, Y. P.; Lee, C. B.; Kim, K. H.; Kang, C. H.; Osan, J.; Hoog, J. D.; Worobiec, A.; Grieken, R. V. Environ. Sci. Technol. 2001, 35, 4487. https://doi.org/10.1021/es0155231
  23. US EPA, EPA/625/SR-96/010a, 1999.
  24. Ho, K. F.; Lee, S. C.; Chan, C. K.; Yu, J. C.; Chow, J. C.; Yao, X. H. Atmos. Environ. 2003, 37, 31. https://doi.org/10.1016/S1352-2310(02)00804-X
  25. Nishikawa, M.; Kanamori, S. Anal. Science 1991, 7, 1127. https://doi.org/10.2116/analsci.7.Supple_1127
  26. Nguyen, H. T.; Kang, C. H.; Ma, C. J.; Choi, K. C.; Kim, J. S.; Lee, J. H.; Kim, K. H. Water Air Soil Pollut. 2009, 196, 225. https://doi.org/10.1007/s11270-008-9771-3
  27. Wall, S. M.; John, W.; Ondo, J. L. Atmos. Environ. 1988, 22, 1649. https://doi.org/10.1016/0004-6981(88)90392-7
  28. Park, M. H.; Kim, Y. P.; Kang, C. H. Water Air Soil Pollut.: Focus 2003, 3, 117.
  29. Ji, J. H.; Kam, G. N.; Hwang, J. H. Korean J. of Atmos. Environ. 2001, 17, 441.
  30. NOAA, Air Resources Laboratory, HYSPLIT4 (HYbrid Single- Particle Lagrangian Integrated Trajectory) model, 2009 Silver Spring 2009, (http://www.arl.noaa.gov/ HYSPLIT_info.php).
  31. Kim, K. W.; Bang, S. Y.; Jung, J. H. Korean J. of Atmos. Environ. 2008, 24, 162. https://doi.org/10.5572/KOSAE.2008.24.2.162
  32. Kim, N. K.; Kim, Y. P.; Kang C. H.; Moon, K. C. Korean J. of Atmos. Environ. 2003, 19, 333.
  33. Draxler, R. R. J. Geophys. Res. 1996, 101, 255.

Cited by

  1. Seasonal variation in trace element concentrations and Pb isotopic composition of airborne particulates during Asian dust and non-Asian dust periods in Daejeon, Korea vol.74, pp.4, 2015, https://doi.org/10.1007/s12665-015-4425-4
  2. Influences of Long-Range Transported Air Pollutants on Atmospheric TSP Aerosol Compositions at Jeju Island of Korea during 2011-2013 vol.37, pp.5, 2016, https://doi.org/10.1002/bkcs.10731
  3. Origins and discrimination between local and regional atmospheric pollution in Haiphong (Vietnam), based on metal(loid) concentrations and lead isotopic ratios in PM10 vol.25, pp.26, 2018, https://doi.org/10.1007/s11356-018-2722-7
  4. 배경지역 대기경계층 미세먼지의 화학조성 특성: 2012년 가을 측정 vol.58, pp.3, 2012, https://doi.org/10.5012/jkcs.2014.58.3.267
  5. Analysis of a decade of Asian outflow of PM10 and TSP to Gosan, Korea; also incorporating Radon-222 vol.6, pp.3, 2012, https://doi.org/10.5094/apr.2015.059
  6. 광주지역 황사시 미세먼지 유입경로별 중금속 오염도 평가 vol.29, pp.1, 2012, https://doi.org/10.5322/jesi.2020.29.1.55
  7. Metal Concentrations and Source Apportionment of PM2.5 in Chiang Rai and Bangkok, Thailand during a Biomass Burning Season vol.4, pp.7, 2012, https://doi.org/10.1021/acsearthspacechem.0c00140