DOI QR코드

DOI QR Code

Photodissocaition Dynamics of Propiolic Acid at 212 nm: The OH Production Channel

  • Shin, Myeong Suk (Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Lee, Ji Hye (Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Hwang, Hyonseok (Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Kwon, Chan Ho (Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Kim, Hong Lae (Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University)
  • Received : 2012.06.27
  • Accepted : 2012.08.07
  • Published : 2012.11.20

Abstract

Photodissociation dynamics of propiolic acid ($HC{\equiv}C-COOH$) at 212 nm in the gas phase was investigated by measuring rotationally resolved laser-induced fluorescence spectra of OH ($^2{\Pi}$) radicals exclusively produced in the ground electronic state. From the spectra, internal energies of OH and total translational energy of products were determined. The electronic transition at 212 nm responsible for OH dissociation was assigned as the ${\pi}_{C{\equiv}C}{\rightarrow}{\pi}^*{_{C=O}}$ transition by time-dependent density functional theory calculations. Potential energy surfaces of both the ground and electronically excited states were obtained employing quantum chemical calculations. It was suggested that the dissociation of OH from propiolic acid excited at 212 nm should take place along the $S_1/T_1$ potential energy surfaces after internal conversion and/or intersystem crossing from the initially populated $S_2$ state based upon the potential energy calculations and model calculations for energy partitioning of the available energy among products.

Keywords

References

  1. Schinke, R. Photodissociation Dynamics; Cambridge University Press: Cambridge, 1993.
  2. Schinke, R. Photodissociation Dynamics; Cambridge University Press: Cambridge, 1993.
  3. Hunnicutt, S. S.; Waits, L. D.; Guest, J. A. J. Phys. Chem. 1989, 93, 5188. https://doi.org/10.1021/j100350a033
  4. Hunnicutt, S. S.; Waits, L. D.; Guest, J. A. J. Phys. Chem. 1991, 95, 562. https://doi.org/10.1021/j100155a015
  5. Peterman, D. R.; Daniel, R. G.; Horwits, R. J.; Guest, J. A. Chem. Phys. Lett. 1995, 236, 564. https://doi.org/10.1016/0009-2614(95)00273-7
  6. North, S. W.; Blank, D. A.; Gezelter, J. D.; Longfellow, C. A.; Lee, Y. T. J. Chem. Phys. 1995, 102, 4447. https://doi.org/10.1063/1.469493
  7. Owrunski, J. C.; Baronavski, A. P. J. Chem. Phys. 1999, 111, 7329. https://doi.org/10.1063/1.480056
  8. Kwon, H. T.; Shin, S. K.; Kim, S. K.; Kim, H. L. J. Phys. Chem. A 2001, 105, 6775. https://doi.org/10.1021/jp010787v
  9. Kitchen, D. C.; Forde, N. R.; Butler, L. J. J. Phys. Chem. A 1997, 101, 6603. https://doi.org/10.1021/jp9700241
  10. Kumar, A.; Upadhyaya, H. P.; Naik, P. D.; Maity, D. K.; Mittal, J. P. J. Phys. Chem. A 2002, 49, 11847.
  11. Gaussian 09: Gaussian Inc.: Pittsburgh, PA, 2009.
  12. Van, C. A.; Schaefer, L.; Siam, K.; Ewbank, J. D. J. Mol. Struct. (Theochem) 1989, 56, 271.
  13. Ng, T. L.; Bell, S. J. Mol. Spectros. 1974, 50, 166. https://doi.org/10.1016/0022-2852(74)90225-2
  14. Demoulin, D. Chem. Phys. 1976, 17, 471. https://doi.org/10.1016/S0301-0104(76)80010-9
  15. Benson, S. W. Thermochemical Kinetics; John Wiley and Sons: New York, 1968.
  16. Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Chem. Phys. 1997, 106, 1063. https://doi.org/10.1063/1.473182
  17. Lee, J. H.; Hwang, H.; Kwon, C. H.; Kim, H. L. J. Phys. Chem. A 2010, 114, 2053. https://doi.org/10.1021/jp9091865
  18. Dieke, G. H.; Crosswhite, H. M. J. Quant. Spectrosc. Radiat. Transfer 1962, 2, 97. https://doi.org/10.1016/0022-4073(62)90061-4
  19. Chidsey, I. L.; Crosley, D. R. J. Quant. Spectrosc. Radiat. Transfer 1980, 23, 187. https://doi.org/10.1016/0022-4073(80)90006-0
  20. North, S. W.; Hall, G. E. J. Chem. Phys. 1996, 104, 1864. https://doi.org/10.1063/1.471533
  21. Lee, K. W.; Lee, K. S.; Jung, K. H.; Volpp, H. R. J. Chem. Phys. 2002, 117, 9266. https://doi.org/10.1063/1.1514587
  22. Andresen, P.; Rothe, E. W. J. Chem. Phys. 1985, 82, 3634. https://doi.org/10.1063/1.448897
  23. Hanazaki, I. Chem. Phys. Lett. 1993, 201, 301. https://doi.org/10.1016/0009-2614(93)85074-X
  24. Kumar, A.; Naik, P. D. Chem. Phys. Lett. 2006, 422, 152. https://doi.org/10.1016/j.cplett.2006.02.073
  25. Levin, R. D.; Bernstein, R. B. Molecular Reaction Dynamics and Chemical Reactivity; Oxford Univ. Press: New York, 1987.
  26. Zamir, E.; Levin, R. D. Chem. Phys. 1980, 52, 253. https://doi.org/10.1016/0301-0104(80)85229-3
  27. Robinson, P. J.; Holbrook, K. A. Unimolecular Reactions; Wiley: New York, 1972.
  28. Arunan, E.; Wategaonkar, S. J.; Setser, D. W. J. Phys. Chem. 1991, 95, 1539. https://doi.org/10.1021/j100157a008
  29. Dong, E.; Setser, D. W.; Hase, W. L.; Song, K. J. Phys. Chem. A 2006, 110, 1484. https://doi.org/10.1021/jp052888p
  30. Chang, A. H. H.; Hwang, D. W.; Yang, X. M.; Mebel, A. M.; Lin, S. H.; Lee, Y. T. J. Chem. Phys. 1999, 110, 10810. https://doi.org/10.1063/1.478999
  31. Busch, G. E.; Wilson, K. R. J. Chem. Phys. 1972, 56, 3626. https://doi.org/10.1063/1.1677740
  32. Tuck, A. F. J. Chem. Soc. Faraday Trans. II 1977, 73, 689. https://doi.org/10.1039/f29777300689

Cited by

  1. Propiolic Acid in Solid Nitrogen: NIR- and UV-Induced cistrans Isomerization and Matrix-Site-Dependent transcis Tunneling vol.123, pp.8, 2019, https://doi.org/10.1021/acs.jpca.8b11319