DOI QR코드

DOI QR Code

Total Synthesis of Azasugar 1,4-Dideoxy-1,4-imino-D-galacitol

  • Received : 2012.07.17
  • Accepted : 2012.07.31
  • Published : 2012.11.20

Abstract

A new highly stereoselective synthesis of pyrrolidine azasugar 1,4-dideoxy-1,4-imino-D-galacitol is being reported herein. The synthesis was achieved in a linear sequence and inexpensive chiral source (+)-diethyl tartarate was used as the starting material. The key step involved during the synthesis was Pd catalysed amino cyclization of alkenylamine, Bose modified Mitsunobu reaction and Sharpless asymmetric dihydroxylation.

Keywords

References

  1. Butters, D. T.; van den Broek, A. G. M. L.; Fleet, W. J. G.; Krulle, M. T.; Wormald, R. M.; Dwek, A. R.; Platt, M. F. Tetrahedron: Asymm. 2000, 11, 113. https://doi.org/10.1016/S0957-4166(99)00468-1
  2. Compain, P.; Martin, O. R. Iminosugars: From Synthesis to Therapeutic Applications; Wiley: Chichester, 2007.
  3. Cox, T. M.; Platt, F. M.; Aerts, J. M. F. G. Iminosugars 2007, 295. https://doi.org/10.1002/9780470517437.ch13
  4. Winchester, B. G. Tetrahedron: Asymm. 2009, 20, 645. https://doi.org/10.1016/j.tetasy.2009.02.048
  5. Greimel, P.; Spreitz, J.; Stütz, A. E.; Wrodnigg, T. M. Curr. Topics Med. Chem. 2003, 3, 513. https://doi.org/10.2174/1568026033452456
  6. Fattorusso, E.; Scafati, O. T. Modern Alkaloids; Wiley-VCH: New York, 2008; pp 111-133.
  7. Look, G. C.; Fotsch, C. H.; Wong, C.-H. Acc. Chem. Res. 1993, 26, 182. https://doi.org/10.1021/ar00028a008
  8. Asano, N.; Oseki, K.; Kizu, H.; Matsui, K. J. Med. Chem. 1994, 37, 3701. https://doi.org/10.1021/jm00048a006
  9. Cox, T.; Lachmann, R.; Hollak, C.; Aerts, J.; van Weely, S.; Hribicek, M.; Platt, F.; Butters, T.; Dwek, R.; Moyses, C.; Gow, I.; Elstein, D.; Zimran, A. Lancet 2000, 355, 1481. https://doi.org/10.1016/S0140-6736(00)02161-9
  10. Futerman, A. H.; van Meer, G. Nature Rev. Mol. Cell Biol. 2004, 5, 554. https://doi.org/10.1038/nrm1423
  11. Huang, Y.; Dalton, D. R.; Carroll, P. J. J. Org. Chem. 1997, 62, 372. https://doi.org/10.1021/jo962028s
  12. Meng, Q.; Hesse, M. Helv. Chim. Acta 1991, 74, 445. https://doi.org/10.1002/hlca.19910740222
  13. Fleet, G. W. J.; Nicholas, S. J.; Smith, P. W.; Evans, S. V.; Fellows, L. E.; Nash, R. J. Tetrahedron Lett. 1985, 26, 3127. https://doi.org/10.1016/S0040-4039(00)98636-2
  14. Lundt, I.; Madsen, R.; Daher, S. A.; Winchester, B. Tetrahedron 1994, 50, 7513. https://doi.org/10.1016/S0040-4020(01)90479-X
  15. Lee, R. E.; Smith, M. D.; Nash, R. J.; Griffiths, R. C.; McNeil, M.; Grewal, R. K.; Yan, W.; Besra, G. S.; Brennan, P. J.; Fleet, G. W. J. Tetrahedron Lett. 1997, 38, 6733. https://doi.org/10.1016/S0040-4039(97)01539-6
  16. Sadhu, P. S.; Naveen Kumar, S.; Chandrasekharam, M.; Pica- Mattoccia, L.; Ciol, D.; Jayathirtha Rao, V. Bioorg. Med. Chem. Lett. 2012, 22, 1103. https://doi.org/10.1016/j.bmcl.2011.11.108
  17. Narender, P.; Srinivas, U.; Ravinder, M.; Anand Rao, B.; Ramesh, Ch.; Harakishore, K.; Gangadasu, B.; Murthy, U. S. N.; Jayathirtha Rao, V. Bioorg. Med. Chem. 2006, 14, 4600. https://doi.org/10.1016/j.bmc.2006.02.020
  18. Narender, P.; Srinivas, U.; Gangadasu, B.; Biswas, S.; Jayathirtha Rao, V. Chem. Lett. 2005, 15, 5378. https://doi.org/10.1016/j.bmcl.2005.09.008
  19. Bernotas, R. C. Tetrahedron Lett. 1990, 31, 469. https://doi.org/10.1016/0040-4039(90)87010-W
  20. Pham-Huu, D.-P.; Gizaw, Y.; BeMiller, J. N.; Petrus, L. Tetrahedron 2003, 59, 9413. https://doi.org/10.1016/j.tet.2003.09.058
  21. Fuentes, J.; Sayago, F. J.; Illangua, J. M.; Gasch, C.; Angulo, M.; Pradera, M. A. Tetrahedron: Asymm. 2004, 15, 603. https://doi.org/10.1016/j.tetasy.2004.01.003
  22. Lundt, I.; Madsen, R. Synthesis 1993, 720.
  23. Lombardo, M.; Fabbroni, S.; Trombini, C. J. Org. Chem. 2001, 66, 1264. https://doi.org/10.1021/jo0056545
  24. Wu, S.-F.; Ruan, Y.-P.; Zheng, X.; Huang, P.-Q. Tetrahedron 2010, 66, 1653. https://doi.org/10.1016/j.tet.2010.01.011
  25. Mukai, C.; Moharram, S. M.; Kataoka, O.; Hanaoka, M. J. Chem. Soc. Perkin Trans., 1 1995, 2849.
  26. Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651. https://doi.org/10.1016/0040-4020(78)80197-5
  27. Harcken, C.; Martin, S. F. Org. Lett. 2001, 3, 3591. https://doi.org/10.1021/ol016729+
  28. Lal, B.; Pramanik, B. N.; Manhas, M. S.; Bose, A. K. Tetrahedron Lett. 1977, 18, 1977. https://doi.org/10.1016/S0040-4039(01)83657-1
  29. Staudinger, H.; Meyer, J. Helv. Chim. Act. 1919, 2, 635. https://doi.org/10.1002/hlca.19190020164
  30. Gololobov, Yu. G.; Zhmurova, I. N.; Kasukhin, L. F. Tetrahedron 1981, 37, 437. https://doi.org/10.1016/S0040-4020(01)92417-2
  31. Hirai, Y.; Terada, T.; Momose, T. Tetrahedron Lett. 1992, 33, 7893. https://doi.org/10.1016/S0040-4039(00)74771-X
  32. Yokoyama, H.; Otaya, K.; Kobayashi, H.; Miyazawa, M.; Yamaguchi, S.; Hirai, Y. Org. Lett. 2000, 2, 2427. https://doi.org/10.1021/ol0060432
  33. Saitoh, Y.; Moriyama, Y.; Hirota, H.; Takahashi, T.; Khuong-Huu, Q. Bull. Chem. Soc. Jpn. 1981, 54, 488. https://doi.org/10.1246/bcsj.54.488
  34. Tamaru, Y.; Hojo, M.; Yoshida, Z. J. Org. Chem. 1988, 53, 5731. https://doi.org/10.1021/jo00259a024
  35. Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483. https://doi.org/10.1021/cr00032a009
  36. Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroeder, G.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968. https://doi.org/10.1021/ja00214a053