DOI QR코드

DOI QR Code

The Relationship between Microbial Characteristics and Glomalin Concentrations in Paddy Soils of Gyeongnam Province

경남지역 논토양 미생물 특성과 글로말린 함량 상관관계

  • Lee, Young-Han (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Kim, Min-Keun (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Ok, Yong Sik (Biochar Research Center, Department of Biological Environment, Kangwon National University)
  • Received : 2012.07.23
  • Accepted : 2012.09.01
  • Published : 2012.10.30

Abstract

Glomalin-related soil protein has been suggested as an enhancer for soil stability by promoting the aggregation. In this study, we examined the concentrations of glomalin and characteristics of microbial community in 20 paddy soils sampled from Gyeongnam Province. Total soil glomalin as glomalin-related soil protein (GRSP) had a significant positive correlation with soil organic matter (p<0.01) and soil dehydrogenase activity (p<0.01). The concentration of GRSP significantly correlated to soil microbial biomass carbon (p<0.001) and the total bacterial community (p<0.01) in paddy soils. In addition, the GRSP had a significant positive correlation with gram-negative bacteria community (p<0.05) and ratio of cy19:0 to 18:$1{\omega}7c$ (p<0.05) in paddy soils. In conclusion, the concentration of GRSP could be an indicator of soil health that simplify the inspection steps for sustainable agriculture in paddy soils.

경남지역 논토양의 글로말린 함량과 미생물 특성과의 관계를 분석하기 위하여 2011년에 20개소를 선정하여 분석한 결과는 다음과 같다. 토양 글로말린 함량은 토양 유기물 함량 (r=0.595, p<0.01) 및 탈수소효소 활성 (r=0.663, p<0.01)과 정의상관 관계를 나타냈다. 또한, 글로말린 함량은 미생물 생체 탄소 함량 (r=0.710, p<0.001) 및 총 세균군집 (r=0.616, p<0.01)과 정의상관을 보였다. 그리고 글로말린 함량은 그람음성 세균의 군집 (r=0.561, p<0.05) 및 cy19:0/18:$1{\omega}7c$ (r=0.487, p<0.05)와 정의상관 관계를 나타냈다. 따라서 논토양에서 글로말린 함량은 지속가능한 친환경농업을 위해 토양 건강성의 지표로 활용할 수 있을 것으로 생각된다.

Keywords

References

  1. Alguacil, M.M., E. Lumini, A. Rolda, J.R. Salinas-Garci, P. Bonfante, and V. Bianciotto. 2008. The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol. Appl. 18:527-536. https://doi.org/10.1890/07-0521.1
  2. Bossio, D.A. and K.M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 35:265-278. https://doi.org/10.1007/s002489900082
  3. Casida, L.E., D.A. Klein, and T. Santoro. 1964. Soil dehydrogenase activity. Soil Sci. Soc. Am. J. 47:599-603.
  4. Celik, I., Z.B. Barut, I. Ortas, M. Gok, A. Demirbas, Y. Tulun, and C. Akpinar. 2011. Impacts of different tillage practices on some soil microbiological properties and crop yield under semi-arid Mediterranean conditions. Int. J. Plant Prod. 5(3):237-254.
  5. Dick, R.P. 1997. Enzyme activities as intergrative indicators of soil health, p. 121-156. In C.E. Parkhurst, B.M. Doube, and V.V.S.R. Gupta (eds.). Biological Indicators of Soil Health. CAB International, Oxon, UK.
  6. Driver, J.D., W.E. Holben, and M.C. Rillig. 2005. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 37(1): 101-106. https://doi.org/10.1016/j.soilbio.2004.06.011
  7. Fokom, R., S. Adamou, M.C. Teugwa, A.D. Begoude Boyogueno, W.L. Nana, M.E.L. Ngonkeu, N.S. Tchameni, D. Nwaga, G. Tsala Ndzomo, and P.H. Amvam Zollo. 2012. Glomaln related soil protein, carbon, nitrogen and soil aggregate stability as affected by land use variation in the humid forest zone of south Cameroon. Soil Till. Res. 120:69-75. https://doi.org/10.1016/j.still.2011.11.004
  8. Hamel, C., K. Hanson, F. Selles, A.F. Cruz, R. Lemke, B. McConkey, and R. Zentner. 2006. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie. Soil Biol. Biochem. 38:2104-2116. https://doi.org/10.1016/j.soilbio.2006.01.011
  9. He, X., Y. Li, and L. Zhao. 2010. Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of Artemisia ordosica Krasch. in Mu Us sandland, China. Soil Biol. Biochem. 42:1313-1319. https://doi.org/10.1016/j.soilbio.2010.03.022
  10. Huang, H.L., S.Z. Zhang, N.Y. Wu, L. Luo, and P. Christie. 2009. Influence of Glomus etunicatum/Zea mays mycorrhiza on atrazine degradation, soil phosphatase and dehydrogenase activities, and soil microbial community structure. Soil Biol. Biochem. 41(4):726-734. https://doi.org/10.1016/j.soilbio.2009.01.009
  11. Jastrow, J.D. 1996. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol. Biochem.665-676.
  12. Jeon, W.T., K.Y. Seong, M.T. Kim, G.J. Oh, I.S. Oh, and U.G. Kang. 2010. Changes of soil physical properties by glomalin concentration and rice yield using different green manure crops in paddy. Korean J. Soil Sci. Fert. 43:119-123.
  13. Johnson, C.K., B.J. Wienhold, J.W. Doran, R.A. Drijber, and S.F. Wright. 2004. Linking microbial-scale findings to farm-scale outcomes in a dryland cropping system. Precis. Agric. 5:311-328. https://doi.org/10.1023/B:PRAG.0000040803.35346.b2
  14. Johnson, C.K., J.W. Doran, H.R. Duke, B.J. Wienhold, K.M. Eskridge, and J.F. Shanahan. 2001. Field-scale electrical conductivity mapping for delineating soil condition. Soil Sci. Soc. Am. J. 65:1829-1837. https://doi.org/10.2136/sssaj2001.1829
  15. Kieft, T.L., E. Wilch, K. O'connor, D.B. Ringelberg, and D.C. White. 1997. Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms. Appl. Environ. Microbiol. 63:1531-1542.
  16. Lee, Y.H., B.K. Ahn, and Y.K. Sonn. 2011a. Relationship of topography and microbial community from paddy soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44(6):1158-1163. https://doi.org/10.7745/KJSSF.2011.44.6.1158
  17. Lee, Y.H., B.K. Ahn, S.T. Lee, M.A. Shin, E.S. Kim, W.D. Song, and Y.K. Sonn. 2011b. Impacts of soil type on microbial community from paddy soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44(6):1164-1168. https://doi.org/10.7745/KJSSF.2011.44.6.1164
  18. Lee, Y.H., B.K. Ahn, S.T. Lee, M.A. Shin, E.S. Kim, W.D. Song, and Y.K. Sonn. 2011c. Impacts of soil texture on microbial community from paddy soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44(6):1176-1180. https://doi.org/10.7745/KJSSF.2011.44.6.1176
  19. Lee, Y.H. and H.D. Yun. 2011. Changes in microbial community of agricultural soils subjected to organic farming system in Korean paddy fields with no-till management. J. Korean Soc. Appl. Biol. Chem. 54(3):434-441. https://doi.org/10.3839/jksabc.2011.067
  20. Lee, Y.H. and H. Kim. 2011. Response of soil microbial communities to different farming systems for upland soybean cultivation. J. Korean Soc. Appl. Biol. Chem. 54(3):423-433. https://doi.org/10.3839/jksabc.2011.066
  21. Macalady, J.L., M.E. Fuller, and K.M. Scow. 1998. Effects of metam sodium fumigation on soil microbial activity and community structure. J. Environ. Qual. 27:54-63.
  22. Miller, R.M. and J.D. Jastrow. 1990. Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol. Biochem. 22(5):579-584.. https://doi.org/10.1016/0038-0717(90)90001-G
  23. Min, S.G., S.S. Park, and Y.H. Lee. 2011. Comparison of soil microbial communities to different practice for strawberry cultivation in controlled horticultural land. Korean J. Soil Sci. Fert. 44(3):479-484. https://doi.org/10.7745/KJSSF.2011.44.3.479
  24. NIAST. 2000. Methods of analysis of soil and plant. National Institute of Agricultural Science and Technology, Suwon, Korea. (In Korean).
  25. Rillig, M.C. 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 84:355-363. https://doi.org/10.4141/S04-003
  26. Rilling, M.C. and D.L. Mummey. 2006. Mycorrhizas and soil structure. New Phytol. 171:41-53. https://doi.org/10.1111/j.1469-8137.2006.01750.x
  27. Rilling, M.C., E.R. Lutgen, P.W. Ramsey, J.N. Klironomos, and J.E. Gannon. 2005. Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiologis 49:251-259. https://doi.org/10.1016/j.pedobi.2004.11.003
  28. Rillig, M.C., P.W. Ramsey, S. Morris, and E.A. Paul. 2003. Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant Soil 293-299.
  29. SAS. 2006. SAS enterprise guide Version 4.1. SAS Inst., Cary, NC.
  30. Schutter, M.E. and R.P. Dick. 2000. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci. Soc. Am. J. 64:1659-1668. https://doi.org/10.2136/sssaj2000.6451659x
  31. Six, J., E.T. Elliott, and K. Paustian. 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2099-2103.
  32. Treseder, K.K. and K.M. Turner. 2007. Glomalin in ecosystems. Soil Sci. Soc. Am. J. 71:1257-1266. https://doi.org/10.2136/sssaj2006.0377
  33. Vance, E.D., P.C. Brookes, and D.S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass carbon. Soil Biol. Biochem. 19:703-707. https://doi.org/10.1016/0038-0717(87)90052-6
  34. Vodnik, D., H. Grcman, I. Macek, J.T. van Elteren, and M. Kovacevic. 2008. The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Sci. Total Environ. 392:130-136. https://doi.org/10.1016/j.scitotenv.2007.11.016
  35. Wilson, G.W.T., C.W. Rice, M.C. Rillig, A. Springer, and D.C. Hartnett. 2009. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol. Lett. 12:452-I461. https://doi.org/10.1111/j.1461-0248.2009.01303.x
  36. Wright, S.F. and A. Upadhyaya. 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein from aruscular mycorrhizal fungi. Soil Sci. 161(9):575-596. https://doi.org/10.1097/00010694-199609000-00003
  37. Wright, S.F. and A. Upadhyaya. 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 97-107.
  38. Wright, S.F. and R.L. Anderson. 2000. Aggregate stability and glomalin in alternative crop rotations for the central Great Plains. Biol. Fertil. Soils 31:249-253. https://doi.org/10.1007/s003740050653
  39. Wright, S.F., J.L. Starr, and I.C. Paltineanu. 1999. Changes in aggregate stability and concentration of glomalin during tillage management transition. 63:1825-1829. https://doi.org/10.2136/sssaj1999.6361825x
  40. Wright, S.F., K.A. Nichols, and W.F. Schmidt. 2006. Comparison of efficacy of three extractants to solubilize glomalin on hyphae and in soil. Chemosphere 64:1219-1224. https://doi.org/10.1016/j.chemosphere.2005.11.041
  41. Wright, S.F., M. Franke-Snyder, J.B. Morton, and A. Upadhyaya. 1996. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181:193-203. https://doi.org/10.1007/BF00012053
  42. Wright, S.F., V.S. Green, and M.A. Cavigelli. 2007. Glomalin in aggregate size classes from three different farming systems. Soil Till. Res. 94:546-549. https://doi.org/10.1016/j.still.2006.08.003
  43. Zelles, L. 1997. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275-294. https://doi.org/10.1016/S0045-6535(97)00155-0
  44. Zhang, S., Q. Li, X. Zhang, K. Wei, L. Chen, and W. Liang. 2012. Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil Till. Res. 124:196-202. https://doi.org/10.1016/j.still.2012.06.007

Cited by

  1. The Relationship between Microbial Characteristics and Glomalin Concentrations of Controlled Horticultural Soils in Gyeongnam Province vol.47, pp.2, 2014, https://doi.org/10.7745/KJSSF.2014.47.2.107