References
-
F. Ye, J. Zhang, H. Zhang, and L. Liu, "Pore Structure and Mechanical Properties in Freeze Cast Porous
$Si_3N_4$ Composites Using Polyacrylamide as an Addition Agent," J. Alloys Compd., 506 423-27 (2010). https://doi.org/10.1016/j.jallcom.2010.07.020 - U. Soltmann, H. Bottcher, D. Koch, and G. Grathwohl, "Freeze Gelation: A new Option for the Production of Biological Ceramic Composites (biocers)," Mater. Lett., 57 2861-65 (2003). https://doi.org/10.1016/S0167-577X(02)01388-5
- J.S. Lee, S.H. Lee, and S.C. Choi, "Improvement of Porous Silicon Carbide Filters by Growth of Silicon Carbide Nanowires Using a Modified Carbothermal Reduction Process," J. Alloys Compd., 467 543-49 (2009). https://doi.org/10.1016/j.jallcom.2007.12.042
- D.H. Kwak, J. H. Kim, E. J. Lee, and D. J. Kim, "Formation of Bioactive Ceramic Foams by Polymer Pyrolysis and Self- Blowing (in Korean)," J. Kor. Ceram. Soc., 48 [5] 412-17 (2011). https://doi.org/10.4191/kcers.2011.48.5.412
-
L. Jing, K. Zuo , Z. Fuqiang , X. Chun , F. Yuanfei, D. Jiang, and Y-P. Zeng, "The Controllable Microstructure of Porous
$Al_2O_3$ Ceramics Prepared Via a Novel Freeze Casting Route," Ceram. Int., 36 2499-503 (2010). https://doi.org/10.1016/j.ceramint.2010.07.005 -
C. Kawai, T. Matsuura, and A. Yamakawa, "Separation-Permeation Performance of Porous
$Si_3N_4$ Ceramics Composed of Columnar Beta-$Si_3N_4$ Grains as Membrane Filters for Microfiltration," J. Mater. Sci., 34 893-96 (1999). https://doi.org/10.1023/A:1004532200735 - A. G. Constant, A.Y. Khodakov, R. Bechara, and V.L. Zholobenko, "Support Mesoporosity: A Tool for Better Control of Catalytic Behavior of Cobalt Supported Fischer Tropsch Catalysts," Stud. Surf. Sci., 144 609-16 (2002).
-
P.-C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, and W. A. Jacoby, "Bactericidal Activity of Photocatalytic
$TiO_2$ Reaction: Toward and Understanding of Its Killing Mechanism", Appl. Environ. Microbiol., 65 [9] 4094-98 (1999). -
F. Mendez-Hermida, E. Ares-Mazas, K.G. McGuigan, M. Boyle, C. Sichel, and P. Fernandez-Ibanez, "Disinfection of Drinking Water Contaminated with Cryptosporidium Parvum Oocysts Under Natural Sunlight and Using the Photocatalyst
$TiO_2$ ," J. Photochem. Photobiol., B, 88 105-11 (2007). https://doi.org/10.1016/j.jphotobiol.2007.05.004 - X. Chen and Samuel S. Mao, "Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications," Chem. Rev., 107 [7] 2891-959 (2007). https://doi.org/10.1021/cr0500535
-
D.-H. Kim, K.-S. Park, Y.-J. Choi, H.-J. Choi, and J.-G. Park, "Synthesis of
$TiO_2$ ITO Nanostructure Photoelectrodes and Their Application for Dye-sensitized Solar Cells (in Korean)," J. Kor. Ceram. Soc., 48 [1] 94-98 (2011). https://doi.org/10.4191/KCERS.2011.48.1.094 -
G. Plesch, M. Gorbar, U. F. Vogt, K. Jesenak, and M. Vargova, "Reticulated Macroporous Ceramic Foam Supported
$TiO_2$ for Photocatalytic Applications," Mater. Lett., 63 461-63 (2009). https://doi.org/10.1016/j.matlet.2008.11.008 - D.-W. Wang, H.-T. Fang, F. Li, Z.-G. Chen, Q.-S. Zhong, G. Q. Lu, and H.-M. Cheng, "Aligned Titania Nanotubes as an Intercalation Anode Material for Hybrid Electrochemical Energy Storage," Adv. Funct. Mater., 18 3787-93 (2008). https://doi.org/10.1002/adfm.200800635
- M. Boaro, J.M. Vohs, and R.J. Gorte, "Synthesis of Highly Porous Yttriastabilized Zirconia by Tape-Casting Methods," J. Am. Ceram. Soc., 86 [3] 395-400 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03311.x
- J.H. She and T. Ohji, "Fabrication and Characterization of Highly Porous Mullite Ceramics," Mater. Chem. Phys., 80 610-14 (2003). https://doi.org/10.1016/S0254-0584(03)00080-4
- I.-J. Jin. et al. "Nanomaterials (in Korean)," Ed. by C.-S. Kim, pp. 382-413, Dae Young Sa, Republic of Korea, 2006.
-
L. Ren, Y.-P Zeng, and D. Jiang, "Preparation of Porous
$TiO_2$ by a Novel Freeze Casting," Ceram. Int., 35 1267-70 (2009). https://doi.org/10.1016/j.ceramint.2008.04.009 -
S.-J. Kim, G.-H. Chang, Y.-C. Jin, and G.-R. Jheong, "The Change of Crystal Structure of
$TiO_2$ Fine Powders by Heat Treatment (in Korean)," J. Kor. Soc. Heat Treatment., 7 [1] 11-6 (1994). -
S.-M. Kim, T.-K. Yun, and D.-I. Hong, "Effect of Rutile Structure on
$TiO_2$ Photocatalytic Activity (in Korean)," J. Kor. Chem. Soc., 49 [6] 567-74 (2005). https://doi.org/10.5012/jkcs.2005.49.6.567 -
M.-J. Hwang, T.B. Nguyen, and K.-S. Ryu, "A Study on Photocatalytic Decomposition of Methylene Blue by Crystal Structures of Anatase/Rutile
$TiO_2$ (in Korean)," Appl. Chem. Eng., 23 [2] 148-52 (2012). -
J.-T. Lee, J.-S. Jeong, T.- K. Yun, and J.- Y. Bae, "Photocatalytic Activity of
$TiO_2$ Nanoparticles with Different Structure and Morphology (in Korean)," Appl. Chem., 14 [1] 21-24 (2010). -
O. Teruhisa, T. Kojiro, H. Suguru, and M. Michio, "Synergism between Rutile and Anatase
$TiO_2$ Particles in Photocatalytic Oxidation of Naphthalene," Appl. Catalysis A: General, 244 383-91 (2003). https://doi.org/10.1016/S0926-860X(02)00610-5 -
Y. Wang, L. Zhang, K. Deng, X. Chen, and Z. Zou, "Low Temperature Synthesis and Photocatalytic Activity of Rutile
$TiO_2$ Nanorod Superstructures," J. Phys. Chem. C, 111 2709-14 (2007). https://doi.org/10.1021/jp066519k - C. Qianwang, Q. Yitai, and C. Zuyao, "Origin of the Grain Growth Anisotropy in Titania," Mater. Res. Bull., 29 [10] 1079-83 (1994). https://doi.org/10.1016/0025-5408(94)90090-6
-
K.Thamaphat, P. Limsuwan, and B. Ngotawornchai, "Phase Characterization of
$TiO_2$ Powder by XRD and TEM." Kasetsart J. Nat. Sci., 42 [5] 357-61 (2008).
Cited by
- Freeze casting – A review of processing, microstructure and properties via the open data repository, FreezeCasting.net vol.94, pp.None, 2012, https://doi.org/10.1016/j.pmatsci.2018.01.001