DOI QR코드

DOI QR Code

Development of a SEAMCAT Based Interference Evaluation Tool with ITU-R P.526

ITU-R P.526을 지원하는 SEAMCAT 기반 전파 간섭 평가 도구 개발

  • 임창헌 (부경대학교 전자공학과 통신시스템 연구실) ;
  • 권종만 ((주)국토해양환경기술단) ;
  • 김용훈 ((주)아이로직스) ;
  • 이양원 (부경대학교 공간정보시스템 공학과)
  • Received : 2012.06.05
  • Accepted : 2012.08.29
  • Published : 2012.09.30

Abstract

Currently, SEAMCAT has been widely used as a tool to evaluate the effects of interference among a variety of wireless communication systems. This supports various channel propagation models, all of which are based on some statistical models for the channel propagation and do not exploit any specific terrain characteristics. Thus it is not appropriate for assessing the effects of interference between wireless systems, given some specific terrain features. In order to overcome this limit in its use, it is necessary to extend the capability of SEAMCAT to support a channel propagation model which takes into account terrain informations. The ITU-R P.526 is a familiar channel propagation model which calculates the path loss considering the terrain features. In this paper, we present an enhanced version of SEAMCAT which supports the ITU-R P.526 and provide a few examples of interference evaluation using it.

SEAMCAT(Spectrum Engineering Advanced Monte Carlo Analysis Tool)은 다양한 통신 시스템 간에 발생할 수 있는 간섭 영향을 분석하는 도구로서 현재 널리 사용되고 있다. 기존의 SEAMCAT은 여러 가지 채널 전파 모델을 지원하고 있지만, 모두 경로 손실을 통계적으로 모델링하는 형태이기 때문에 구체적인 지형 정보를 활용하고 있지 않다. 따라서 기존의 SEAMCAT으로는 구체적인 지형 환경을 고려하여 전파 간섭 영향을 분석하기는 어렵다. 이런 제약을 해소하기 위해서는 구체적인 지형 정보를 토대로 경로 손실을 추정하는 채널 전파 모델을 SEAMCAT이 지원할 수 있도록 그 기능을 확장할 필요가 있다. 지형 정보를 감안하여 경로 손실을 추정하는 대표적인 채널 전파 모델로는 ITU-R P.526 모델이 있다. 본 논문에서는 ITU-R P.526 모델을 지원하는 SEAMCAT 기반 간섭 도구를 제안하고, 몇 가지 간단한 분석 사례를 보여주고자 한다.

Keywords

References

  1. G. Staple and K. Werbach, "The End of Spectrum Scarcity", IEEE Spectrum, vol. 41, no. 3, pp. 48-52, 2004
  2. ECO, SEAMCAT Handbook, Jan. 2010.
  3. Yan-Ming Cheng, Il-Kyoo Lee, Jae-Sang Cha, Kyung-Sub Kwak, "Analysis on the Interf erence of UWB Sensor into WiBro in Korea," Communications and Information Technology 2009, pp. 1421-1425, Sep. 2009
  4. A. Rahim, S. Zeisberg, "Evaluation of UW B Interference on 3.5 GHz Fixed WiMax Terminal," Mobile and Wireless Communications Summit, pp. 1-5, Jul. 2007
  5. Denny Setiawan, Dadang Gunawan, Dja mhari Sirat, "Interference Analysis of Guard Band and Geographical Separation between DVB-T and E-UTRA in Digital Dividend UHF Band," International Conference on Instrumentation, Communications, Information Technology, and Bio medical Engineering, pp. 1-6, Nov. 2009
  6. Ivancica Sakal, Dina Simunic, "Simulation of Interference between Bluetooth and 802.11b Systems," IEEE International Symposium on Electromagnetic Compatibility, pp. 1321-1324, May 2003
  7. Rogério Dionisio, Paulo Marques, Jona than Rodriguez, "TV White Spaces Maps Computation through Interference Analysis," Future Network & Mobile Summit, pp. 1-9, Jun. 2011
  8. J. Choi, V. Q. Duy, and W. Lee , "A Study of Radio Wave Propagation Criterion for the Cognitive Radio System using Interference Analysis in Broadcasting Band," KICS Journal, vol. 34, no. 12, pp. 1014-1022, Dec. 2009
  9. Recommendation ITU-R P.526-11 Propagation by diffraction, ITU
  10. D. Wiecek and D. Wypior, "New SEAMC A T propagation models: irregular terrain model and ITU-R P.1546-4," Journal of Telecommunications and Information technology, pp.131 -140, Mar. 2011.
  11. J. Deygout, "Correction Factor for Mult iple Knife-Edge Diffraction," IEEE Trans. on Antennas and Propagation, AP-39, 8, pp. 1256-1258, Aug. 1991
  12. STG(09)24rev2 part3bis-Calibration test for the SEAMCAT DL OFDMA module