DOI QR코드

DOI QR Code

가우시안 창을 이용한 번호판 영역 검출

License Plates Detection Using a Gaussian Windows

  • 강용석 (한국폴리텍대학 자동차학과) ;
  • 배철수 (관동대학교 전자통신공학과)
  • 투고 : 2012.08.07
  • 심사 : 2012.08.31
  • 발행 : 2012.09.30

초록

본 논문은 차량 번호판 중앙부 위치값을 기반으로 한 신경망을 이용하여 차량의 번호판 영역을 추출하는 방법을 제안하고자 한다. 임의의 숫자들로 정의된 번호판영역에 대한 학습패턴과 넓은 범위를 수용할 수 있도록 한 신경망의 학습패턴을 이용하여 보다 효율적인 방법을 제시하였다. 학습패턴으로 차량 번호판 인식의 최적화을 이루었고 차량번호 및 헤드라이트 부분의 은닉효과와, 학습패턴의 확대 및 감소에 대하여 연구하였다. 위의 과정을 통하여 지하주차장에서 595여대의 자동차에 대하여 번호판 영역을 추출한 결과 98.5%의 인식율을 보여주었다.

In the current study, the authors propose a method for extracting license plate regions by means of a neural network trained to output the plates center of gravity. The method is shown to be effective. Since the learning pattern presentation positions are defined by random numbers, a different pattern is submitted to the neural network for learning each time, which enables it to form a neural network with high universality of coverage. The article discusses issues of the optimal learning surface for a license plate covered by the learning pattern, the effect of suppression learning of the number and headlight sections, as well as the effect of learning pattern enlargement/reduction and of concentration value conversion. Results of evaluation tests based on pictures of 595 vehicles taken at an underground parking garage demonstrated detection rates of 98.5%.

키워드

참고문헌

  1. K. Imai, K. Gohara, and Y. Uchigawa. Recognition of laterally written character lines using a 3-layered model. Trans. I.E.I.C.E., PRU91-3, 1991.
  2. J. Nishimura and N. Koyama. Learning capability vs input pattern resolution in back propagation method. Trans. Inst. Inf. Proc. Eng. Jpn., 35, No. 11, pp.2331-2337, 1994.
  3. H. Kato et al. Number plate recognition techniques. Mitsubishi Electric Industries Review, 62, No. 2, pp.8.12, 1988.
  4. H. Takahashi, E. Maeda, A. Shio, and K. Ishii. Image recognition techniques for automation of parking garage supervision. NTT R&D, 41, No. 4, pp.493-500, 1992.
  5. Y. Handa et al. Development and applications of fast image processing devices. Mitsubishi Heavy Industries Review, 27, No.1, pp.76-80 1990.
  6. M. Deguchi, K. Kato, G. Miya, and M. Hinenoya. Development of a number plate reading device for computing the travel time. Sumitomo Electrical Industries, No. 139, pp.8-13, 1991.
  7. T. Sai, T. Agui, and M. Nakajima. Number plate region extraction method using adaptive parameter flat area-restricted half conversion. I.E.I.C.E. (D-II),72, No. 4, pp. 597-604, 1994.
  8. F. Martin, M. Garcia, and L. Alba, "New methods for automatic reading of VLP's (Vehcle License Plates)," in Proc. IASTED Int. Conf. SPPRA, Jun. 2002.
  9. B. Hongliang and L. Changping, "A hybrid license plate extraction method based on edge statistics and morphology," in Proc. ICPR, pp. 831-834, 2004.
  10. D. Zheng, Y. Zhao, and J. Wang, "An efficient method of license plate location," Pattern Recognit. Lett., vol. 26, no. 15, Nov. pp.2431-2438, 2005. https://doi.org/10.1016/j.patrec.2005.04.014
  11. ZHOU Kaijun, CHEN Sanbao, XU Jiangling, Research of Vehicle License Plate Location and Character Segmentation Under Complex Scenes, Computer Engineering, pp.198-200, 2007.
  12. HO-Sik Park, Cheol-Soo Bae, "An Efficient Vehicle Parking Detection Method Using Gray Scale Images", Journal of Korea Information and Communications Society, Vol 36, No10, pp.629-634, 2011. https://doi.org/10.7840/KICS.2011.36C.10.629
  13. Cheol-Soo Bae, Hyun-Yeol Kim, Tae-Woo Kim, Yong-Seok Kang, Suen-Ki Hwang, "Implementation of Smart car using Fuzzy Rules", Journal of Korea Institute of Information, Electronics and Communication Technology, Vol. 5, No2, 2012.