DOI QR코드

DOI QR Code

Development of Time-Dependent Reliability-Based Design Method Based on Stochastic Process on Caisson Sliding of Vertical Breakwater

직립방파제의 케이슨 활동에 대한 확률과정에 기반한 시간의존 신뢰성 설계법 개발

  • Kim, Seung-Woo (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Cheon, Sehyeon (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Suh, Kyung-Duck (Department of Civil and Environmental Engineering, Seoul National University)
  • 김승우 (서울대학교 건설환경공학부) ;
  • 천세현 (서울대학교 건설환경공학부) ;
  • 서경덕 (서울대학교 건설환경공학부)
  • Received : 2012.06.11
  • Accepted : 2012.09.12
  • Published : 2012.10.31

Abstract

Although the existing performance-based design method for the vertical breakwater evaluates an average sliding distance during an arbitrary time, it does not calculate the probability of the first occurrence of an event exceeding an allowable sliding distance(i.e. the first-passage probability). Designers need information about the probability that the structure is damaged for the first time for not only design but also maintenance and operation of the structure. Therefore, in this study, a time-dependent reliability design method based on a stochastic process is developed to evaluate the first-passage probability of caisson sliding. Caisson sliding can be formulated by the Poisson spike process because both occurrence time and intensity of severe waves causing caisson sliding are random processes. The occurrence rate of severe waves is expressed as a function of the distribution function of sliding distance and mean occurrence rate of severe waves. These values simulated by a performance-based design method are expressed as multivariate regression functions of design variables. As a result, because the distribution function of sliding distance and the mean occurrence rate of severe waves are expressed as functions of significant wave height, caisson width, and water depth, the first-passage probability of caisson sliding can be easily evaluated.

직립 케이슨 방파제에 대한 기존의 성능설계법은 임의의 시간 동안의 평균활동량을 산정하지만 허용활동량을 최초로 초과하는 사건의 발생확률(최초통과확률)은 계산하지 못한다. 설계자는 구조물이 최초로 피해를 입을 확률에 대한 정보를 구조물의 설계 단계뿐 아니라 관리 및 운영에서도 필요로 한다. 따라서 본 연구에서는 케이슨 활동의 최초통과확률을 산정하기 위해 확률과정에 기반한 시간의존 신뢰성 설계법을 개발하였다. 방파제의 활동을 일으키는 폭풍파는 발생 시간과 강도의 임의성의 특징이 있기 때문에 Poisson spike process를 사용하여 케이슨 활동을 정식화할 수 있다. 여기서 방파제의 활동을 일으키는 폭풍파의 발생률은 활동량분포함수와 폭풍파의 평균발생률로 표현된다. 성능설계법으로 모의된 이들은 설계변수들의 다변량 회귀함수로 나타내진다. 결과적으로 활동량분포함수와 폭풍파의 평균발생률은 유의파고, 케이슨 폭, 수심의 함수로 표현되어 케이슨 활동에 대한 최초통과확률을 손쉽게 산정할 수 있다.

Keywords

References

  1. 김승우, 서경덕 (2009). 국내 케이슨 방파제의 활동에 대한 신뢰성 해석 및 부분안전계수 산정, 한국해안.해양공학회논문집, 21(4), 278-289.
  2. 김승우, 김소연, 서경덕 (2012). 직립방파제의 케이슨 활동에 미치는 기후변화영향에 대한 수심의 효과, 한국해안.해양공학회논문집, 24(3), 179-188. https://doi.org/10.9765/KSCOE.2012.24.3.179
  3. 서경덕, 김승우, Mori, N., Mase, H. (2011). 기후변화 효과를 고려한 케이슨 방파제의 시간 의존 성능설계, 한국해안.해양공학회논문집, 23(3), 215-225.
  4. 양영순, 서용석, 이재옥 (1999). 구조 신뢰성 공학, 서울대학교 출판부, ISBN 89-521-0063-8.
  5. 이철응 (2009). 혼성제 직립 케이슨의 활동에 대한 부분안전계수 산정, 한국해안.해양공학회논문집, 21(4), 267-277.
  6. Besley, P. (1999). Overtopping of seawalls-design and assessment manual, R&D Technical Rep. No. W178, Environment Agency, Bristol, UK.
  7. Cramer, H. and Leadbetter, M.R. (1967). Stationary and related stochastic processes, John Wiley & Sons, New York.
  8. Goda, Y. (1974). A new method of wave pressure calculation for the design of composite breakwater, Proc. 14th Int. Conf. Coast. Eng., 1702-1720.
  9. Goda, Y. and Takagi, H. (2000). A reliability design method of caisson breakwaters with optimal wave heights, Coastal Eng. J., 42, 357-387.
  10. Hong, S. Y., Suh, K.-D. and Kweon, H. M. (2004). Calculation of expected sliding distance of breakwater caisson considering variability in wave direction, Coastal Eng. J., 46(1), 119-140. https://doi.org/10.1142/S0578563404000987
  11. Kim, S.-W. (2012). Probabilistic analysis of caisson sliding of vertical breakwater considering climate change impacts, PhD dissertation, Seoul National University.
  12. Kim, S.-W. and Suh, K.-D. (2006). Application of reliability design methods to Donghae harbor breakwater, Coast. Eng. J., 48(1), 31-37. https://doi.org/10.1142/S0578563406001325
  13. Kim, T.-M. and Takayama, T. (2003). Computational improvement for expected sliding distance of a caisson-type breakwater by introduction of a doubly-truncated normal distribution, Coast. Eng. J., 45(3), 387-419. https://doi.org/10.1142/S0578563403000816
  14. Li, C.Q. and Zhao, J.M. (2010). Time-dependent risk assessment of combined overtopping and structural failure for reinforced concrete coastal structures, J. Waterway, Port, Ocean Eng., 136(2), 97-103. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000031
  15. Madsen, H.O., Krenk, S. and Lind, N.C. (1986). Method of structural safety, Prentice-Hall, New Jersey.
  16. Melchers, R.E. (1999). Structural reliability analysis and prediction, 2nd ed., John Wiley & Sons, Chichester.
  17. Mori, N., Shimura, Y., Yasuda, T. and Mase, H. (2010a). Projection of extreme waves under a global warming scenario, Annual J. Coast. Eng., JSCE, 57, 1231-1235 (in Japanese).
  18. Mori, N., Shimura, Y., Nakajo, S., Yasuda, T. and Mase, H. (2011). Multi-model ensemble projection of coastal environment under global warming scenario, J. Waterway, Port, Coast., Ocean Eng. (in preparation).
  19. Mori, N., Yasuda, T., Mase, H., Tom, T. and Oku, Y. (2010b). Projection of extreme wave climate change under the global warming, Hydrological Res. Letters, 4, 15-19. https://doi.org/10.3178/hrl.4.15
  20. OCDI (2009). Technical standards and commentaries for port and harbor facilities in Japan, The Overseas Coastal Area Development Institute of Japan, Ports and Harbours Bureau, Ministry of Land, Infrastructure, Transport and Tourism.
  21. Okayasu, A. and Sakai, K. (2006). Effect of sea level rise on sliding distance of a caisson breakwater: Optimization with probabilistic design method, Proc. 30th Int. Conf. Coast. Eng., 4883-4893.
  22. Oumeraci, H., Kortenhaus, A., Allsop, W., de Groot, M., Crouch, R., Vrijling, H. and Voortman, H. (2001). Probabilistic design tools for vertical breakwaters, Sweta & Zeitlinger B.V., Lisse.
  23. Reeve, D.E. (1998). Coastal flood risk assessment, J. Waterway, Port, Coastal, Ocean Eng., 124(5), 219-228. https://doi.org/10.1061/(ASCE)0733-950X(1998)124:5(219)
  24. Shimosako, K. and Takahashi, S. (2000). Application of deformation- based reliability design for coastal structures. Proc. Int. Conf. Coastal Struct., A. A. Balkema, Spain, 363-371.
  25. Suh, K.-D., Kwon, H.-D. and Lee, D.-Y. (2010). Some characteristics of large deepwater waves around the Korean Peninsula, Coast. Eng., 57, 375-384. https://doi.org/10.1016/j.coastaleng.2009.10.016
  26. Takagi, H., Kashihara, H., Esteban, M. and Shibayama, T. (2011). Assessment of future stability of breakwaters under climate change, Coastal Eng. J., 53(1), 21-39. https://doi.org/10.1142/S0578563411002264
  27. Takahashi, S., Shimosako, K., Kimura, K. and Suzuki, K. (2000). Typical failure of composite breakwaters in Japan, Proc. 27th Int. Conf. Coast. Eng., 1899-1910.
  28. Takayama, T. and Ikeda, N. (1993). Estimation of sliding failure probability of present breakwaters for probabilistic design, Rep. of the Port and Hab. Res. Inst., 31(5).
  29. U.S. Army Corps of Engineers (2006). Coastal Engineering Manual, U.S. Army Corps of Engineers, Washington, D.C. (in 6 volumes).
  30. Yoshioka, T. and Nagao, T. (2005). Level 1-reliability-based design method for gravity-type special breakwaters, Research report of NILIM (in Japanese).

Cited by

  1. Evaluation of Allowable Criteria in First-Passage Probability Method for Caisson Sliding of Vertical Breakwater vol.25, pp.5, 2013, https://doi.org/10.9765/KSCOE.2013.25.5.317
  2. Reliability Analysis of the Long Caisson Breakwater Considering to the Wave Force Reduction Parameter vol.29, pp.2, 2017, https://doi.org/10.9765/KSCOE.2017.29.2.121