DOI QR코드

DOI QR Code

Antioxidative Activity of Rumex crispus L. Extract

소리쟁이 추출물의 항산화 효능

  • Rhim, Tae-Jin (Department of Animal Biotechnology in Division of Animal and Life Resources) ;
  • Choi, Moo-Young (Department of Food and Nutrition, Sangji University) ;
  • Park, Hee-Juhn (Department of Pharmaceutical Engineering, Sangji University)
  • 임태진 (상지대학교 동물생명자원학부 동물생명공학전공) ;
  • 최무영 (상지대학교 식품영양학과) ;
  • 박희준 (상지대학교 제약공학과)
  • Received : 2012.06.15
  • Accepted : 2012.10.18
  • Published : 2012.10.29

Abstract

The objective of this study was to investigate the antioxidative capacity of ethanol extracts from Rumex crispus L. The concentration of R. crispus L. extract at which DPPH radical scavenging activity was inhibited by 50% was 2.15 mg/mL, which was lower than that of ${\alpha}$-tocopherol (0.43 mg/mL), as compared to 100% by pyrogallol as a reference. Total antioxidant status was examined by total antioxidant capacity against ABTS radical reactions. Total antioxidant capacities of R. crispus L. extract at concentrations of 0.1 and 1 mg/mL were 0.47 and 2.33 mM Trolox equivalents, respectively, which were higher than those of ${\alpha}$-tocopherol. Superoxide scavenging activities of R. crispus L. extract at concentrations of 0.1 and 1 mg/mL were 21.5 and 78.9%, respectively, which were not significantly (p>0.05) different from those of catechin. Oxygen radical absorbance capacities of R. crispus L. extract at concentrations of 20 and 100 ${\mu}g/mL$ were 62.5 and 156.4 ${\mu}M$ Trolox equivalents, respectively, which were lower than those of ascorbic acid. Cupric reducing antioxidant capacities of R. crispus L. extract at concentrations of 0.1 and 1 mg/mL were 0.28 and 1.88 mM Trolox equivalents, which were similar or significantly (p<0.05) higher than those of ${\alpha}$-tocopherol, respectively. R. crispus L. extract prevented supercoiled DNA strand breakage induced by hydroxyl radical and peroxyl radical. Total phenolic contents of R. crispus L. extract at concentrations of 0.5 and 5 mg/mL were 0.58 and 3.85 mM gallic acid equivalents, respectively. R. crispus L. extract at concentration of 0.1 and 0.5 mg/mL inhibited 0.2 mM tert-butyl hydroperoxide-induced cytotoxicity by 38.5 and 63.5%, respectively, in HepG2 cell culture system. Thus, strong antioxidant and cytotoxicity-inhibiting effects of R. crispus L. extract seem to be due to, at least in part, the prevention from free radicals-induced oxidation as well as high levels in total phenolic contents.

본 연구에서는 소리쟁이 에탄올추출물의 항산화 효과를 조사하였다. Pyrogallol의 억제율을 100%로 기준하였을 때, DPPH 라디칼을 50% 억제시키는데 필요한 소리쟁이 추출물의 농도는 2.15 mg/mL으로 ${\alpha}$-tocopherol의 $IC_{50}$(0.43 mg/mL)에 비해 높게 나타났다. 총항산화능은 ABTS 라디칼에 대한 소거활성으로 측정하였다. 소리쟁이 추출물 0.1 및 1 mg/mL의 총항산화능은 각각 0.47 및 2.33 mM Trolox와 동등한 수준이었으며, ${\alpha}$-tocopherol에 비해 높게 나타났다. 소리쟁이 추출물 0.1 및 1 mg/mL의 superoxide 소거활성은 각각 21.5 및 78.9%이었으며, catechin에 비해 차이가 없었다. 소리쟁이 추출물 20 및 100 ${\mu}g/mL$의 peroxyl 라디칼 소거활성은 각각 62.5 및 156.4 ${\mu}M$ Trolox와 동등한 수준이었으며, ascorbic acid에 비해 낮게 나타났다. 소리쟁이 추출물 0.1 및 1 mg/mL의 구리이온 환원력은 각각 0.28 및 1.88 mM Trolox와 동등한 수준이었으며, ${\alpha}$-tocopherol에 비해 유사하거나 높게 나타났다. 소리쟁이 추출물은 hydroxyl 라디칼 및 peroxyl 라디칼로 유발된 supercoiled DNA strand 절단을 억제시켰다. 소리쟁이 추출물 0.5 및 5 mg/mL의 총페놀 함량은 각각 0.58 및 3.85 mM gallic acid와 동등한 수준으로 높게 나타났다. 또한, HepG2 세포주를 이용한 세포배양에서 소리쟁이 추출물 0.1 및 0.5 mg/mL 농도의 첨가는 0.2 mM tert-butyl hydroperoxide로 유도된 세포독성을 각각 38.5 및 63.5% 감소시켰다. 따라서, 본 연구 결과들은 소리쟁이 추출물의 강력한 항산화 효과와 세포독성 억제 효과를 나타내며, 이러한 효능은 적어도 자유라디칼의 산화 억제와 높은 총페놀 함량에 기인하는 것으로 사료된다.

Keywords

References

  1. Apak, R., K. Güçlü, M. Ozyurek and S.E. Karademir. 2004. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 52:7970-7981. https://doi.org/10.1021/jf048741x
  2. Bae, K. 2000. The Medical Plants of Korea. Kyo-Hak Publising Co., Seoul, Korea. p. 92 (in Korean).
  3. Erel, O. 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 37:277-285. https://doi.org/10.1016/j.clinbiochem.2003.11.015
  4. Gunaydin, K., G. Topcu and R.M. Ion. 2002. 1,5-Dihydroxyanthraquinones and an anthrone from roots of Rumex crispus. Nat. Prod. Lett. 16:65-70. https://doi.org/10.1080/1057563029001/4872
  5. Halliwell, B., J.M.C. Gutteridge and C.E. Cross. 1992. Free radicals, antioxidants and human disease:where are we now? J. Lab Clin. Med. 119:598-620.
  6. Hiramoto, K., N. Ojima, K.I. Sako and K. Kikugawa. 1996. Effect of plant phenolics on the formation of the spin-adduct of hydroxyl radical and the DNA strand breaking by hydroxyl radical. Biol. Pharm. Bull. 19:558-563. https://doi.org/10.1248/bpb.19.558
  7. Hu, C., Y. Zhang and D.D. Kitts. 2000. Evaluation of antioxidant and prooxidant activities of bamboo Phyllostachys nigra var. Henonis leaf extract in vitro. J Agric. Food Chem. 48:3170-3176. https://doi.org/10.1021/jf0001637
  8. Hwang, S.W., T.J. Ha, J.R. Lee, J. Lee, S.H. Nam, K.H. Park and M.S. Yang. 2004. Isolation of anthraquinone derivatives from the root of Rumex japonicus H. J. Korean Soc. Appl. Biol. Chem. 47:274-278 (in Korean).
  9. Huang, D., B. Ou, M. Hampsch-Woodill, J. A. Flanagan and R. L. Prior. 2002. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 50:4437-4444. https://doi.org/10.1021/jf0201529
  10. Jeong, G.T., K.M. Lee and D.H. Park. 2006. Study of antimicrobial and antioxidant activities of Rumex crispus extract. Korean Chem. Eng. Res. 44:81-86 (in Korean).
  11. Kim, D.K., S.U. Choi, S.Y. Ryu, K.R. Lee and O.P. Zee. 1998. Cytotoxic constituents of Rumex japonicus. Yakhak Hoeji 42:233-237.
  12. Kim, H.J., E.Y. Hwang, N.K. Im, S.K. Park and I.S. Lee. 2010. Antioxidant activities of Rumex crispus extracts and effects on quality characteristics of seasoned pork. Korean J. Food Sci. Technol. 42:445-451 (in Korean).
  13. Kim, J.C., G.J. Choi, S.W. Lee, J.S. Kim, K.Y. Chung and K.Y. Cho. 2004. Screening extracts of Achyranthes japonica and Rumex crispus for activity against various plant pathogenic fungi and control of powdery mildew. Pest Manag. Sci. 60:803-808. https://doi.org/10.1002/ps.811
  14. Lee, S., D. Kim, D. Yim and S. Lee. 2007. Anti-inflammatory, analgesic and hepatoprotective effect of semen of Rumex crispus. Kor. J. Pharmacogn. 38:334-338 (in Korean).
  15. Liu, F., V.E.C. Ooi and S.T. Chang. 1997. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci. 60:763-771. https://doi.org/10.1016/S0024-3205(97)00004-0
  16. Maksimovic, Z., N. Kovacevic, B. Lakusic and T. Cebovic. 2011. Antioxidant activity of yellow dock (Rumex crispus L., Polygonaceae) fruit extract. Phytother. Res. 25:101-105. https://doi.org/10.1002/ptr.3234
  17. Malterud, K.E., T.L. Farbrot, A.E. Huse and R.B. Sund. 1993. Antioxidant and radical scavenging effects of anthraquinones and anthrones. Pharmacology 47:77-85. https://doi.org/10.1159/000139846
  18. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  19. Rhim, T.J. and M.Y. Choi. 2010. The antioxidative effects of Ampelopsis brevipedunculata extracts. Korean J. Plant Res. 23:445-450 (in Korean).
  20. Rhim, T.J. and M.Y. Choi. 2011. The antioxidative effects of Rhododendron brachycarpum extracts. Korean J. Plant Res. 24:456-460 (in Korean). https://doi.org/10.7732/kjpr.2011.24.4.456
  21. Singleton, V.L. and R. Orthofer. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299:152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  22. Steel, R.G.D. and J.H. Torrie. 1980. Principles and Procedures of Statistics, 2nd ed, McGraw-Hill, New York, USA. pp. 186-187.
  23. Suh, H.J., K.S. Lee, S.R. Kim, M.H. Shin, S. Park and S. Park. 2011. Determination of singlet oxygen quenching and protection of biological systems by various extracts from seed of Rumex crispus L. J. Photochem. Photobiol. B 102:102-107. https://doi.org/10.1016/j.jphotobiol.2010.09.008
  24. Thannickal, V.J. and B.L. Fanburg. 2000. Reactive oxygen species in cell signaling. American J. Physiol. Lung Cell Mol. Physiol. 279:L1005-L1029.
  25. Yildirim, A., A. Mavi and A.A. Kara. 2001. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agric. Food Chem. 49:4083-4089. https://doi.org/10.1021/jf0103572

Cited by

  1. Antioxidant Activities of Medicinal Plant Extracts vol.42, pp.4, 2013, https://doi.org/10.3746/jkfn.2013.42.4.512
  2. Antioxidant and Anti-inflammatory Effects of Extracts from the Flowers of Weigela subsessilis on RAW 264.7 Macrophages vol.26, pp.3, 2016, https://doi.org/10.5352/JLS.2016.26.3.338
  3. Evaluations on Antioxidant Effect of Methanol Extract from Immature Cotton Boll vol.26, pp.4, 2013, https://doi.org/10.7732/kjpr.2013.26.4.426
  4. Active Ingredients and Antioxidant Activities of Salvia plebeia R. Br. According to Pretreatment Conditions vol.43, pp.12, 2014, https://doi.org/10.3746/jkfn.2014.43.12.1948
  5. Antimicrobial Effects on Food-Borne Pathogens and the Antioxidant Activity of Torreya Nucifera Extract vol.26, pp.4, 2015, https://doi.org/10.7856/kjcls.2015.26.4.697
  6. 복숭아 품종별 성숙정도에 따른 항산화 및 항염증 효과간의 상관관계 vol.24, pp.5, 2017, https://doi.org/10.11002/kjfp.2017.24.5.638
  7. Rumex crispus Ethanol Extract in Fibroblasts: Evaluation of Anti-oxidant Efficacy and Effect on Collagen Synthesis Stimulation and Degradation Inhibition vol.13, pp.3, 2012, https://doi.org/10.15810/jic.2017.13.3.002
  8. 참소리쟁이 뿌리 추출물 및 분획의 항균 활성과 항생제 증강 활성 vol.25, pp.6, 2012, https://doi.org/10.7783/kjmcs.2017.25.6.375
  9. LPS로 유도된 RAW264.7 세포주 염증모델에서 소리쟁이의 법제처리에 따른 항염증 효과 vol.32, pp.5, 2012, https://doi.org/10.9799/ksfan.2019.32.5.408
  10. Antioxidant Activities of Jeju Wax Apple (Syzygium samarangense) and Safety of Human Keratinocytes and Primary Skin Irritation Test vol.7, pp.2, 2012, https://doi.org/10.3390/cosmetics7020039