DOI QR코드

DOI QR Code

Animal Models for the IGF-1 Signal System in Longevity

장수와 관련된 IGF-1 신호 시스템을 연구하기 위한 동물 모델

  • Kwak, Inseok (Department of Biological Sciences, Silla University)
  • Received : 2012.10.23
  • Accepted : 2012.10.26
  • Published : 2012.10.30

Abstract

Longevity is an exciting but difficult subject to study because it is determined by complex processes that require the coordinated action of several genetic factors as well as physiological and environmental influences. Genetic approaches have been applied to animal models to identify the molecular mechanism responsible for longevity. Several experimental model organisms obtained over the last decades suggest that the complete deletion of a single gene by gene targeting has proven to be an invaluable tool for the discovery of the mechanisms underlying longevity. The first discovery of long-lived mutants came from Caenorhabditis elegans research, which identified the insulin/IGF-1 pathway as responsible for longevity in this worm. IGF-1 is a multifunctional polypeptide that has sequence similarity to insulin and is involved in normal growth and development of cells. Several factors in the IGF-1 system have since been studied by gene targeting in the control of longevity in lower species, including nematode and fruit fly. In addition, significant progress has been made using mice models to extend the lifespan by targeted mutations that interfere with growth hormone/IGF-1 and IGF-1 signaling cascades. A recent finding that IGF-1 is involved in aging in mice was achieved by using liver-specific knockout mutant mice, and this clearly demonstrated that the IGF-1 signal pathway can extend the lifespan in both invertebrates and vertebrate models. Although the underlying molecular mechanisms for the control of longevity are not fully understood, it is widely accepted that reduced IGF-1 signaling plays an important role in the control of aging and longevity. Several genes involved in the IGF-1 signaling system are reviewed in relation to longevity in genetically modified mice models.

장수 또는 노화에 관한 연구는 여러 가지 유전적 요인과 생리학적 및 환경 요인들의 복잡한 조합에 의해 결정되므로, 이와 관련된 연구는 매우 흥미로운 분야이나 또한 어려운 주제이다. 지난 수십 년 동안 장수 또는 노화에 관여하는 분자 메커니즘을 찾기 위하여 동물 모델을 사용한 유전학적 접근법으로, 특이적 유전자를 결손 시키는 연구는 귀중한 도구임이 입증되었다. 장수에 관한 첫 번째 연구는 꼬마선충의 돌연변이체에서 발견되었으며, 이 선충의 인슐린/인슐린유사 성장인자-1 회로가 장수에 관여함이 밝혀졌다. 인슐린유사 성장인자-1은 인슐린과 유사한 아미노산 서열을 가진 폴리펩타이드로, 세포의 정상적인 성장과 발달에 관여한다. 이 발견 이후 인슐린/인슐린유사 성장인자-1 회로에 관여하는 많은 인자들이 선충과 초파리 연구에서 장수에 관여함이 밝혀졌다. 또한 특이적 유전자를 결손 시킨 생쥐 모델을 이용한 연구에서도 인슐린/인슐린유사 성장인자-1 회로뿐 아니라 성장호르몬/인슐린유사 성장인자 회로도 장수에 관여함이 지난 수십 년 동안의 연구결과로 밝혀졌다. 간 조직 특이적으로 인슐린유사 성장인자-1 유전자를 결손 시킨 생쥐모델을 이용한 최근의 연구 결과에 의하면 인슐린유사 성장인자-1 자체도 장수에 관여함이 최초로 밝혀졌으며, 이는 인슐린유사 성장인자-1 회로가 무척추동물뿐 아니라 척추동물에서도 장수에 관여함을 명백하게 보여주는 결과이다. 장수를 조절하는 분자 메커니즘은 아직 완전하게 설명되지 않지만, 감소되어진 인슐린유사 성장인자-1의 신호가 장수와 노화의 조절에 중요한 역할을 하며, 인슐린유사 성장인자-1 회로에 관여하는 여러 가지 유전자들의 장수에서의 역할을 유전자 조작된 생쥐모델을 이용하여 집중적으로 검토하려 한다.

Keywords

References

  1. Barbieri, M., Bonafe, M., Franceschi, C. and Paolisso, G. 2003. Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am. J. Physiol. Endocrinol. Metab. 285, E1064-1071.
  2. Bartke, A. 2001. Mutations prolong life in flies; implications for aging in mammals. Trends Endocrinol. Metab. 12, 233-234. https://doi.org/10.1016/S1043-2760(01)00426-X
  3. Bartke, A. 2003. Can growth hormone (GH) accelerate aging? Evidence from GH-transgenic mice. Neuroendocrinology 78, 210-216. https://doi.org/10.1159/000073704
  4. Bartke, A. and Brown-Borg, H. 2004. Life extension in the dwarf mouse. Curr. Top. Dev. Biol. 63, 189-225. https://doi.org/10.1016/S0070-2153(04)63006-7
  5. Bonkowski, M. S., Pamenter, R. W., Rocha, J. S., Masternak, M. M., Panici, J. A. and Bartke, A. 2006. Long-lived growth hormone receptor knockout mice show a delay in age-related changes of body composition and bone characteristics. J. Gerontol. A Biol. Sci. Med. Sci. 61, 562-567. https://doi.org/10.1093/gerona/61.6.562
  6. Clancy, D. J., Gems, D., Harshman, L. G., Oldham, S., Stocker, H., Hafen, E., Leevers, S. J. and Partridge, L. 2001. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292, 104-106. https://doi.org/10.1126/science.1057991
  7. Clemmons, D. R. and Underwood, L. E. 1992. Role of insulin- like growth factors and growth hormone in reversing catabolic states. Horm. Res. 38, 37-40. https://doi.org/10.1159/000182591
  8. Giani, J. F., Bonkowski, M. S., Munoz, M. C., Masternak, M. M., Turyn, D., Bartke, A. and Dominici, F. P. 2008. Insulin signaling cascade in the hearts of long-lived growth hormone receptor knockout mice: effects of calorie restriction. J. Gerontol. A Biol. Sci. Med. Sci. 63, 788-797. https://doi.org/10.1093/gerona/63.8.788
  9. Gronborg, M., Wulff, B. S., Rasmussen, J. S., Kjeldsen, T. and Gammeltoft, S. 1993. Structure-function relationship of the insulin-like growth factor-I receptor tyrosine kinase. J. Biol. Chem. 268, 23435-23440.
  10. Hammond, J. M., Mondschein, J. S., Samaras, S. E. and Canning, S. F. 1991. The ovarian insulin-like growth factors, a local amplification mechanism for steroidogenesis and hormone action. J. Steroid Biochem. Mol. Biol. 40, 411-416. https://doi.org/10.1016/0960-0760(91)90209-N
  11. Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Géloën, A., Even, P. C., Cervera, P. and Le Bouc, Y. 2003. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 82-87.
  12. Jansen, M., van Schaik, F. M., Ricker, A. T., Bullock, B., Woods, D. E., Gabbay, K. H., Nussbaum, A. L., Sussenbach, J. S. and Van den Brande, J. L. 1983. Sequence of cDNA encoding human insulin-like growth factor I precursor. Nature 306, 609-611. https://doi.org/10.1038/306609a0
  13. Jones, J. I. and Clemmons, D. R. 1995. Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev. 16, 3-34.
  14. Kenyon, C., Chang, J., Gensch, E., Rudner, A. and Tabtiang, R. 1993. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461-464. https://doi.org/10.1038/366461a0
  15. Kimura, K. D., Tissenbaum, H. A., Liu, Y. and Ruvkun, G. 1997. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942-946. https://doi.org/10.1126/science.277.5328.942
  16. LeRoith, D. and Roberts, C. T. Jr. 1993. Insulin-like growth factors. Ann. N. Y. Acad. Sci. 27, 1-9.
  17. LeRoith, D. 2000. Regulation of proliferation and apoptosis by the insulin-like growth factor I receptor. Growth Horm. IGF Res. 10, S12-13. https://doi.org/10.1016/S1096-6374(00)90005-4
  18. Liu, J. L., Yakar, S. and LeRoith, D. 2000. Conditional knockout of mouse insulin-like growth factor-1 gene using the Cre/loxP system. Proc. Soc. Exp. Biol. Med. 223, 344-351. https://doi.org/10.1046/j.1525-1373.2000.22349.x
  19. Liu, J. P., Baker, J., Perkins, A. S., Robertson, E. J. and Efstratiadis, A. 1993. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75, 59-72.
  20. Lombardi, G., Di Somma, C., Rota, F. and Colao, A. 2005. Associated hormonal decline in aging: is there a role for GH therapy in aging men? J. Endocrinol. Invest. 28, 99-108.
  21. Lund, P. K., Moats-Staats, B. M., Hynes, M. A., Simmons, J. G., Jansen, M., D'Ercole, A. J. and Van Wyk, J. J. 1986. Somatomedin-C/insulin-like growth factor-I and insulin- like growth factor-II mRNAs in rat fetal and adult tissues. J. Biol. Chem. 261, 14539-15444.
  22. Masoro, E. J. 2005. Overview of caloric restriction and ageing. Mech. Ageing Dev. 126, 913-922. https://doi.org/10.1016/j.mad.2005.03.012
  23. Salminen, A. and Kaarniranta, K. 2010. Insulin/IGF-1 paradox of aging: regulation via AKT/IKK/NF-kappaB signaling. Cell Signal 22, 573-577. https://doi.org/10.1016/j.cellsig.2009.10.006
  24. Selman, C., Lingard, S., Choudhury, A. I., Batterham, R. L., Claret, M., Clements, M., Ramadani, F., Okkenhaug, K., Schuster, E., Blanc, E., Piper, M. D., Al-Qassab, H., Speakman, J. R., Carmignac, D., Robinson, I. C., Thornton, J. M., Gems, D., Partridge, L. and Withers, D. J. 2008. Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J. 22, 807-818.
  25. Selman, C., Partridge, L. and Withers, D. J. 2011. Replication of extended lifespan phenotype in mice with deletion of insulin receptor substrate 1. PLoS One 6, e16144. https://doi.org/10.1371/journal.pone.0016144
  26. Sun, X. J., Crimmins, D. L., Myers, M. G. Jr., Miralpeix, M. and White, M. F. 1993. Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Mol. Cell. Biol. 13, 7418-7428.
  27. Svensson, J., Söderpalm, B., Sjögren, K., Engel, J. and Ohlsson, C. 2005. Liver-derived IGF-I regulates exploratory activity in old mice. Am. J. Physiol. Endocrinol. Metab. 289, E466-473. https://doi.org/10.1152/ajpendo.00425.2004
  28. Svensson, J., Sjögren, K., Fäldt, J., Andersson, N., Isaksson, O., Jansson, J. O. and Ohlsson, C. 2011. Liver-derived IGF-I regulates mean life span in mice. PLoS One 6, e22640. https://doi.org/10.1371/journal.pone.0022640
  29. Tatar, M., Kopelman, A., Epstein, D., Tu, M. P., Yin, C. M. and Garofalo, R. S. 2001. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107-110. https://doi.org/10.1126/science.1057987
  30. Toogood, A. A., O'Neill, P. A. and Shalet, S. M. 1996. Beyond the somatopause: growth hormone deficiency in adults over the age of 60 years. J. Clin. Endocrinol. Metab. 81, 460-465. https://doi.org/10.1210/jc.81.2.460
  31. Valentinis, B. and Baserga, R. 2001 IGF-I receptor signalling in transformation and differentiation. Mol. Pathol. 54, 133-137. https://doi.org/10.1136/mp.54.3.133
  32. Yakar, S. and Adamo, M. L. 2012. Insulin-like growth factor 1 physiology: lessons from mouse models. Endocrinol. Metab. Clin. North Am. 41, 231-247. https://doi.org/10.1016/j.ecl.2012.04.008