DOI QR코드

DOI QR Code

Analysis of Expression Patterns of Thymosin β4 and CD133 in Normal Stomach

정상 위 조직에서 thymosin β4와 CD133의 발현 양상 분석

  • Ock, Mee Sun (Department of Parasitology and Gnenetics, Kosin University College of Medicine) ;
  • Cha, Hee-Jae (Department of Parasitology and Gnenetics, Kosin University College of Medicine)
  • 옥미선 (고신대학교 의과대학 기생충학 유전학 교실) ;
  • 차희재 (고신대학교 의과대학 기생충학 유전학 교실)
  • Received : 2012.09.18
  • Accepted : 2012.10.05
  • Published : 2012.10.30

Abstract

Thymosin ${\beta}4$ ($T{\beta}4$) has been reported to be overexpressed in CD133-positive colorectal cancer stem cells. We analyzed the relationship between $T{\beta}4$ and CD133-positive stem cells in normal stomach by examining the expression patterns of $T{\beta}4$ and CD133 in normal stomach tissues by immunohistochemical staining; co-localization of $T{\beta}4$ and CD133 was studied by immunofluorescence and confocal laser-scanning microscopy. Both $T{\beta}4$ and CD133 were expressed in stomach glands and showed similar expression patterns. Immunofluorescence staining of $T{\beta}4$ and CD133 showed that the expression of $T{\beta}4$ and CD133 was co-localized. In summary, both $T{\beta}4$ and CD133 were expressed in glands of normal stomachs and expression patterns were co-localized. These data suggest that $T{\beta}4$ expression is strongly related to CD133 expression.

Thymosin ${\beta}4$ 는 대장암에서 암 줄기세포 마커인 CD133을 지닌 세포에서 지니지 않은 세포에 비해 강하게 발현된다고 보고되어 있다. 본 연구에서는 thymosin ${\beta}4$와 줄기세포 마커인 CD133의 상관관계를 정상 위 조직에서 관찰하였다. Thymosin ${\beta}4$와 CD133의 발현 양상은 tissue microarray 조직상에서 면역화학적 방법으로 관찰하였으며 thymosin ${\beta}4$와 CD133의 존재 위치는 면역형광 염색법 및 confocal microscope를 사용하여 조사하였다. Thymosin ${\beta}4$와 CD133은 동일한 양상으로 발현되었으며 모두 위의 선조직에서 강하게 발현되었다. 면역 형광 염색법으로 두가지 단백질을 동시에 염색한 결과 두 단백질이 동일한 위치에서 함께 존재하는 것으로 규명되었다. 이러한 결과는 thymosin ${\beta}4$와 CD133은 정상위의 선조직에서 발현되며 두 단백질의 발현 양상 및 위치가 동일하여 서로 긴밀한 상호작용을 할 가능성을 제시하고 있다.

Keywords

References

  1. Cha, H. J., Jeong, M. J. and Kleinman, H. K. 2003. Role of thymosin beta4 in tumor metastasis and angiogenesis. J. Natl. Cancer Inst. 95, 1674-1680. https://doi.org/10.1093/jnci/djg100
  2. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J. and Maitland, N. J. 2005. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65, 10946-10951. https://doi.org/10.1158/0008-5472.CAN-05-2018
  3. Corbeil, D., Roper, K., Hellwig, A., Tavian, M., Miraglia, S., Watt, S. M., Simmons, P. J., Peault, B., Buck, D. W. and Huttner, W. B. 2000. The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J. Biol. Chem. 275, 5512-5520. https://doi.org/10.1074/jbc.275.8.5512
  4. Eramo, A., Lotti, F., Sette, G., Pilozzi, E., Biffoni, M., Di Virgilio, A., Conticello, C., Ruco, L., Peschle, C. and De Maria, R. 2008. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 15, 504-514. https://doi.org/10.1038/sj.cdd.4402283
  5. Grant, D. S., Rose, W., Yaen, C., Goldstein, A., Martinez, J. and Kleinman, H. 1999. Thymosin beta4 enhances endothelial cell differentiation and angiogenesis. Angiogenesis 3, 125-135. https://doi.org/10.1023/A:1009041911493
  6. Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., Bruns, C. J. and Heeschen, C. 2007. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Stem Cell 1, 313-323.
  7. Iguchi, K., Usami, Y., Hirano, K., Hamatake, M., Shibata, M. and Ishida, R. 1999. Decreased thymosin beta4 in apoptosis induced by a variety of antitumor drugs. Biochem. Pharmacol. 57, 1105-1111. https://doi.org/10.1016/S0006-2952(99)00030-1
  8. Ji, P., Diederichs, S., Wang, W., Boing, S., Metzger, R., Schneider, P. M., Tidow, N., Brandt, B., Buerger, H., Bulk, E., Thomas, M., Berdel, W. E., Serve, H. and Muller-Tidow, C. 2003. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22, 8031-8041. https://doi.org/10.1038/sj.onc.1206928
  9. Jo, J. O., Kang, Y. J., Ock, M. S., Kleinman, H. K., Chang, H. K. and Cha, H. J. 2011. Thymosin beta4 expression in human tissues and in tumors using tissue microarrays. Appl. Immunohistochem. Mol. Morphol. 19, 160-167. https://doi.org/10.1097/PAI.0b013e3181f12237
  10. Kobayashi, T., Okada, F., Fujii, N., Tomita, N., Ito, S., Tazawa, H., Aoyama, T., Choi, S. K., Shibata, T., Fujita, H. and Hosokawa, M. 2002. Thymosin-beta4 regulates motility and metastasis of malignant mouse fibrosarcoma cells. Am. J. Pathol. 160, 869-882. https://doi.org/10.1016/S0002-9440(10)64910-3
  11. Larsson, L. I. and Holck, S. 2007. Occurrence of thymosin beta4 in human breast cancer cells and in other cell types of the tumor microenvironment. Hum. Pathol. 38, 114-119. https://doi.org/10.1016/j.humpath.2006.06.025
  12. Low, T. L. and Goldstein, A. L. 1982. Chemical characterization of thymosin beta 4. J. Biol. Chem. 257, 1000-1006.
  13. Malinda, K. M., Sidhu, G. S., Mani, H., Banaudha, K., Maheshwari, R. K., Goldstein, A. L. and Kleinman, H. K. 1999. Thymosin beta4 accelerates wound healing. J. Invest. Dermatol. 113, 364-368. https://doi.org/10.1046/j.1523-1747.1999.00708.x
  14. Miraglia, S., Godfrey, W., Yin, A. H., Atkins, K., Warnke, R., Holden, J. T., Bray, R. A., Waller, E. K. and Buck, D. W. 1997. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90, 5013-5021.
  15. Philp, D., Nguyen, M., Scheremeta, B., St-Surin, S., Villa, A. M., Orgel, A., Kleinman, H. K. and Elkin, M. 2004. Thymosin beta4 increases hair growth by activation of hair follicle stem cells. FASEB J. 18, 385-387.
  16. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C. and De Maria, R. 2007. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111-115. https://doi.org/10.1038/nature05384
  17. Ricci-Vitiani, L., Mollinari, C., di Martino, S., Biffoni, M., Pilozzi, E., Pagliuca, A., de Stefano, M. C., Circo, R., Merlo, D., De Maria, R. and Garaci, E. 2010. Thymosin beta4 targeting impairs tumorigenic activity of colon cancer stem cells. FASEB J. 24, 4291-4301. https://doi.org/10.1096/fj.10-159970
  18. Safer, D., Elzinga, M. and Nachmias, V. T. 1991. Thymosin beta 4 and Fx, an actin-sequestering peptide, are indistinguishable. J. Biol. Chem. 266, 4029-4032.
  19. Safer, D., Golla, R. and Nachmias, V. T. 1990. Isolation of a 5-kilodalton actin-sequestering peptide from human blood platelets. Proc. Natl. Acad. Sci. USA 87, 2536-2540. https://doi.org/10.1073/pnas.87.7.2536
  20. Sanai, N., Alvarez-Buylla, A. and Berger, M. S. 2005. Neural stem cells and the origin of gliomas. N. Engl. J. Med. 353, 811-822. https://doi.org/10.1056/NEJMra043666
  21. Santelli, G., Califano, D., Chiappetta, G., Vento, M. T., Bartoli, P. C., Zullo, F., Trapasso, F., Viglietto, G. and Fusco, A. 1999. Thymosin beta-10 gene overexpression is a general event in human carcinogenesis. Am. J. Pathol. 155, 799-804. https://doi.org/10.1016/S0002-9440(10)65178-4
  22. Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D. and Dirks, P. B. 2004. Identification of human brain tumour initiating cells. Nature 432, 396-401. https://doi.org/10.1038/nature03128
  23. Steiniger, S. C., Coppinger, J. A., Kruger, J. A., Yates, J., 3rd and Janda, K. D. 2008. Quantitative mass spectrometry identifies drug targets in cancer stem cell-containing side population. Stem Cells 26, 3037-3046. https://doi.org/10.1634/stemcells.2008-0397
  24. Van Troys, M., Dewitte, D., Goethals, M., Carlier, M. F., Vandekerckhove, J. and Ampe, C. 1996. The actin binding site of thymosin beta 4 mapped by mutational analysis. EMBO J. 15, 201-210.
  25. Vermeulen, L., Sprick, M. R., Kemper, K., Stassi, G. and Medema, J. P. 2008. Cancer stem cells--old concepts, new insights. Cell Death Differ. 15, 947-958. https://doi.org/10.1038/cdd.2008.20
  26. Wang, W. S., Chen, P. M., Hsiao, H. L., Wang, H. S., Liang, W. Y. and Su, Y. 2004. Overexpression of the thymosin beta-4 gene is associated with increased invasion of SW480 colon carcinoma cells and the distant metastasis of human colorectal carcinoma. Oncogene 23, 6666-6671. https://doi.org/10.1038/sj.onc.1207888
  27. Yin, A. H., Miraglia, S., Zanjani, E. D., Almeida-Porada, G., Ogawa, M., Leary, A. G., Olweus, J., Kearney, J. and Buck, D. W. 1997. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90, 5002-5012.
  28. Yin, S., Li, J., Hu, C., Chen, X., Yao, M., Yan, M., Jiang, G., Ge, C., Xie, H., Wan, D., Yang, S., Zheng, S. and Gu, J. 2007. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int. J. Cancer 120, 1444-1450. https://doi.org/10.1002/ijc.22476
  29. Young, J. D., Lawrence, A. J., MacLean, A. G., Leung, B. P., McInnes, I. B., Canas, B., Pappin, D. J. and Stevenson, R. D. 1999. Thymosin beta 4 sulfoxide is an anti-inflammatory agent generated by monocytes in the presence of glucocorticoids. Nat. Med. 5, 1424-1427. https://doi.org/10.1038/71002