DOI QR코드

DOI QR Code

Major Compound Analysis and Assessment of Natural Essential Oil on Anti-Oxidative and Anti-Microbial Effects

천연 에센셜 오일의 주요 구성물질 분석과 항산화 및 항균 효과에 관한 연구

  • Shin, Yu-Hyeon (Department of Cosmeceutical Science, Daegu Haany University) ;
  • Kim, Hyun-Jung (Department of Cosmeceutical Science, Daegu Haany University) ;
  • Lee, Jin-Young (Department of Herbal Cosmetic Science, Hoseo University) ;
  • Cho, Young-Je (School of Food Science & Biotechnology, Food & Bio-Industry Research Institute, Kyungpook National University) ;
  • An, Bong-Jeun (Department of Cosmeceutical Science, Daegu Haany University)
  • 신유현 (대구한의대학교 화장품약리학과) ;
  • 김현정 (대구한의대학교 화장품약리학과) ;
  • 이진영 (호서대학교 한방화장품과학과) ;
  • 조영제 (경북대학교 식품공학부 & 식품생물산업 연구소) ;
  • 안봉전 (대구한의대학교 화장품약리학과)
  • Received : 2012.07.20
  • Accepted : 2012.10.27
  • Published : 2012.10.30

Abstract

We studied the physical, chemical, biological, and antimicrobial effects of eight types of essential oils used in the cosmetics industry: lavender, tea tree, rosemary, juniper berry, Chamaecyparis obtusa, cypress, cedar wood, and pine. Lavender oil had a linalyl acetate (an ester chemical compound) content of 48% and radical scavenging activity of 22.36% at 5,000 ppm. Tea tree oil had radical scavenging activity of 43.94% at 5,000 ppm and antimicrobial activity against S. aureus, S. epidermidis, S. mutans, and C. albicans in each 6, 3.5, 6.5, and 5 mm, respectively. Chamaecyparis obtusa oil had the highest acidity (pH 2.64) compared with the other oils, and sesquiterpene compounds were found to have 19.20%. Cedar wood oil had the highest specific gravity and refractive index compared to the other oils and had a sesquiterpene content of 99.73%. The radical scavenging activity of cedar wood essential oil exceeded 39.68% at 5,000 ppm. The clear zone, indicating antimicrobial activity against P. acnes, P. ovale, and C. albicans, was 3.5, 6, and 6 mm, respectively, at a concentration of 1% cedar wood oil. Results showed that with a high sesquiterpene content, the antioxidant effect was generally, but not always, high, suggesting that this is determined according to composition of the compound rather than presence of each antioxidant. The results indicate that antimicrobial activity is determined by the existence of each antimicrobial ingredient rather than terpene composition.

본 연구에서는 화장품산업에 이용 중인 천연 에센셜 오일 8종(라벤더, 티트리, 로즈마리, 주니퍼베리, 편백, 싸이프러스, 시더우드, 파인)을 가지고 물리 화학적 분석과 생리활성 및 항균효과를 실험하였다. 라벤더오일의 경우 에스테르 성분인 linalyl acetate가 48% 함유되어 있었으며, 5,000 ppm의 농도에서 22.36%의 항산화능을 보였다. 티트리 오일의 경우 0.5% 농도에서 43.94% 항산화능을 보였으며 항균효과 또한 뛰어났다. S. aureus, S. epidermidis, S. mutans, C. albicans 균에 각각 6, 3.5, 6.5, 5 mm의 저해환이 측정되어 매우 우수한 품질의 에센셜 오일임이 확인되었다. 편백 오일의 경우 pH가 2.64로 가장 산성도가 높았으며, 세스퀴테르펜 성분이 19.20%로 확인되었다. 시더우드 오일의 경우 샘플 중 비중과 굴절률이 가장 높았으며 전체성분의 99.73%가 세스퀴테르펜으로 구성되어 있었다. 또한 5,000 ppm 농도에서 39.68% 항산화능을 보였다. 특히 1% 농도에서 P. acnes, P. ovale, C. albicans 균에 각각 3.5, 6, 6 mm의 저해환이 측정되어 매우 탁월한 항균효과를 보였다. 반면 세스퀴테르펜 함량이 증가할수록 비교적 항산화능도 높게 나오는 경우도 있지만 그렇지 않은 경우도 있어서 성분조성보다는 각각의 항산화 성분 유무에 따라 항산화능이 결정된다고 판단되며, 마찬가지로 항균력 또한 테르펜의 성분조성보다는 각각의 항균성분의 유무에 따라 항균력이 결정된다고 사료된다.

Keywords

References

  1. An, M. S., Won, J. Y. and Choi, T. H. 2010. Medical aromatherapy: healing with essential oils. pp. 12-15, The Certification Academy for Holistic Aromatherapy.
  2. Arctander, S. 1994. Perfume and flavour materials of natural origin, pp. 10-16, Allured Publishing, USA.
  3. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 26, 1958.
  4. Brud, W. 1993. Blending and compounding: Where is the true essential oil? AROMA '93 Conference Proceeding, pp. 3-6, Aromatherapy Publications, UK.
  5. Conner, D. E. and Beuchat, L. R. 1984. Sensitivity of heat-stressed yeasts to essential oils of plants. Appl. Environ. Microbiol. 47, 229-233.
  6. Kwon, S. Y., Kim, S. E., Kim, E. J., Kim, J. H. and Yoo, K. M. 2008. The complete guide to aromatherapy of Salvatore battaglia, pp. 23-31, Hyunmoonsa publishers, Seoul, Korea.
  7. Lavabre, M. 1990. Aromatherapy workbook. Healing Art Press, USA.
  8. Lee, E. J., Lee, S. H. and Lim, M. H. 2012. Antimicrobial and antioxidative activities of essential oil-focused on Palmarosa (Cymbopogen martini) and Geranium (Pelargonium graveolens). J. Kor. Soc. Cosm.18, 136-143.
  9. Moon, S. J. 2005. Influence of the improvement on acne skin with the essential oils: Clinical demonstration with lavender, teatree, chamomile roman oil on treatment of skin. M. S. Thesis, Chung-Ang University, Seoul, Korea.
  10. Park, M. J., Choi, W. S., Min, B. C., Kim, H. Y., Kang, H. Y. and Choi, I. G. 2008. Antioxidant activities of essential oils from Cbamaecyparis obtuse. Mokchae Konghak 36, 159-167.
  11. Pellegrin, N., Re, R., Yang, M., and Rice-Evans, C. 1998. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2'-azinobis( 3-ethylbenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Method Enzymol. 299, 379-389.
  12. United States Department of Agriculture Research Service. http://www.ars.usda.gov/.
  13. Woo, J. H. 2010. Antioxidant and antimicrobial activities from functional components of major commercial herb essential oil products in Korea and foreign countries. Korean Soc. Hort. Sci. 28, 38-39.

Cited by

  1. Composition Analysis and Antioxidant Activities of the Essential Oil and the Hydrosol Extracted from Rosmarinus officinalis L. and Lavandula angustifolia Mill. Produced in Jeju vol.56, pp.3, 2013, https://doi.org/10.3839/jabc.2013.023