Abstract
Semantic web is utilized to construct advanced information service by using semantic relationships between entities. Text mining can be applied to generate semantic relationships from unstructured data resources. In this study, ontology schema guideline, ontology instance generation, disambiguation of same name by text mining and advanced historical people finding service by reasoning have been proposed. Various relationships between historical event, organization, people, which are created by domain experts, are linked to literatures of National Institute of Korean History (NIKH). It improves the effectiveness of user access and proposes advanced people finding service based on relationships. In order to distinguish between people with the same name, we compares the structure and edge, nodes of personal social network. To provide additional information, external resources including thesaurus and web are linked to all of internal related resources as well.
시맨틱 웹 기술은 특정 개체를 중심으로 의미적 연관 관계를 생성하고 연관 관계를 이용해서 다양한 지능형 정보 서비스를 구축하는데 활용되며, 텍스트 마이닝 기술은 비정형 데이터를 대상으로 의미 분석을 통해서 의미적 연관 관계를 생성하는데 활용될 수 있다. 본 연구에서는 역사인물을 중심으로 온톨로지 스키마, 인스턴스를 생성하는 가이드라인, 인스턴스 생성, 동명이인 해소를 위한 텍스트 마이닝, 추론을 활용한 지능화된 역사인물 검색서비스를 제안한다. 역사분야 전문가들이 생성한 역사적 사건, 기관, 인물 중심의 연관 관계와 국사편찬위원회에서 보유한 다양한 문헌들 간의 연계를 통해, 사용자들의 정보접근성을 향상시킴과 동시에 관계 정보에 기반한 새로운 역사인물 검색 서비스를 제안하였다. 새로운 역사인물 검색 서비스는 인물간의 소셜 네트워크를 사용하여 역사문헌에 나타난 동명이인을 해소함으로써 보다 정확한 검색서비스를 제공하는 것은 물론, 역사 인물 시소러스를 포함한 다양한 외부 정보와의 연계를 통해서 역사인물에 대한 고부가 정보를 제공하고 있다.