DOI QR코드

DOI QR Code

Distribution characteristics of perfluorinated compounds in major river water and sediment

우리나라 주요 하천수 및 퇴적토에 축적된 과불화화합물의 분포특성

  • Yeo, Min-Kyung (Department of Chemistry, Pusan National University) ;
  • Hwang, Eun Hye (Department of Chemistry, Pusan National University) ;
  • Jeong, Gi Ho (Department of Chemistry, Pusan National University)
  • Received : 2012.06.26
  • Accepted : 2012.09.21
  • Published : 2012.10.25

Abstract

We have developed analysis method of PFCs in river water and sediment, and determined seven species of PFCs such as PFBS, PFHxS, PFOS, PFHpA, PFOA, PFNA and PFDA. Water and sediment samples were collected from 21 and 13 different sites along the Nakdong, Seomjin and Nam River, respectively. The water samples were pretreated with HLB cartridge and sediment samples were concentrated after extracted by sonication, and the levels of PFCs were determined by LC-MS/MS. The coefficient of determination ($R^2$) values of calibration curves were higher than 0.99. The method detection limits ranged 0.09~0.63 ng/L in water and 0.013~0.020 ng/g in sediment. The recovery rates of PFCs was found to be 74~98% for water and 87~111% for sediment. PFOA was the major species in water samples and followed by PFHpA and PFOS. In sediment, PFOA, PFOS and PFDA showed similar levels. Both water and sediment samples collected from the Nakdong River showed the highest concentrations of PFCs among the three rivers.

본 연구에서는 perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS), perfluorooctanesulfonate (PFOS), perfluoroheptanoate (PFHpA), perfluorooctanoate (PFOA), perfluorononanoate (PFNA) 및 perfluorodecanoate (PFDA) 등 과불화화합물 7 종의 분석방법을 정립하고 우리나라 주요 하천수 및 퇴적토에 대한 과불화합물의 축적 정도를 분석하고 그 특성을 살펴보았다. 낙동강, 섬진강, 남강을 따라 총 21 개 지점에서 물 시료를, 13 개 지점에서 퇴적토 시료를 채취하였다. 물 시료는 HLB 카트리지를 이용하여 전처리하였고, 퇴적토 시료는 초음파 추출을 거친 후 농축하였으며 모두 LC-MS/MS로 분석하였다. 검정곡선의 결정계수($R^2$)는 0.99 이상, MDL은 물 시료에서 0.09~0.63 ng/L, 퇴적토 시료에서 0.013~0.020 ng/g을 얻었고, 회수율은 물 시료에서 74~98%, 퇴적토 시료에서 87~111%로 나타났다. 하천수에서는 PFOA가 가장 높은 농도를 나타내었고 PFHpA, PFOS가 그 다음으로 높은 농도를 나타냈으며, 퇴적토에서는 PFOA, PFOS 및 PFDA가 비슷한 수준으로 검출되었다. 하천수와 퇴적토 모두 낙동강에서 채취한 시료에서 PFCs의 농도가 가장 높게 나타났다.

Keywords

References

  1. K. Prevedouros, I. T. Cousins, R. C. Buck and S. H. Korzeniowski, Environ. Sci. Technol., 40, 32-44 (2006). https://doi.org/10.1021/es0512475
  2. M. McLachlan, K. E. Holmstroem, M. Reth and U. Berger, Environ. Sci. Technol., 41(21), 7260-7265 (2007). https://doi.org/10.1021/es071471p
  3. F. D. Gilliland and J. S. Mandel, American J. Industrial Medicine, 29(5), 560-568(1996). https://doi.org/10.1002/(SICI)1097-0274(199605)29:5<560::AID-AJIM17>3.0.CO;2-Z
  4. C. Lau, K. Anitole, C. Hodes, D. Lai, A. Pfahles-Hutchens and J. Seed, Toxicol. Sci., 99, 366-394 (2007). https://doi.org/10.1093/toxsci/kfm128
  5. M. M. Peden-Adams, J. M. Keller, J. G. EuDaly, J. Berger, G. S. Gilkeson and D. E. Keil, Toxicol. Sci., 104, 144-154 (2008). https://doi.org/10.1093/toxsci/kfn059
  6. Y. H. Kim and E. S. Cho, Korean J. Vet. Res., 48(3), 347-355(2008).
  7. J. W. Martin, D. C. G. Muir, C. A. Moody, D. A. Ellis, W. C. Kwan, K. R. Solomon and S. A. Mabury, Anal. Chem., 74, 584-590 (2002). https://doi.org/10.1021/ac015630d
  8. J. P. Giesy and K. Kannan, Environ. Sci. Technol., 35, 1339-1342 (2001). https://doi.org/10.1021/es001834k
  9. N. L. Stock, F. K. Lau, D. A. Ellis, J. W. Martin, D. C. G. Muir and S. A. Mabury, Environ. Sci. Technol., 39, 991-996 (2004).
  10. M. Y. Shin and J. K. Im, J. Env. Health. Sci., 35(4), 334-342 (2009). https://doi.org/10.5271/sjweh.1346
  11. M. Murakami, E. Imamura, H. Shinohara, K. Kiri, Y. Muramatsu, A. Harada and H. Takada, Environ. Sci. Technol., 42, 6566-6572 (2008). https://doi.org/10.1021/es800353f
  12. M. J. Dinglasan, Y. Ye, E. A. Edwards and S. A. Mabury, Environ. Sci. Technol., 38, 2857-2864 (2004). https://doi.org/10.1021/es0350177
  13. Risk & Policy Analysis Limited (in association with BRE Environment), 'Proposal for Regulations on PFOS-Related Substances' prepared for Department for Environment, Food and Rural Affairs, Chemicals and GM Policy Division, UK, 4-5, 2004.
  14. K. Prevedouros, I. T. Cousins, R. Buck and S. H. Korzeniowski, Environ. Sci. Tech., 40(1), 32-44 (2006). https://doi.org/10.1021/es0512475
  15. M. J. Strynar, A. B. Lindstrom, S. F. Nakayama, P. P. Egeghy and L. J. Helfant, Chemosphere, 86, 252-257 (2012). https://doi.org/10.1016/j.chemosphere.2011.09.036
  16. P. Labadie and M. Chevreuil, Environ. Pollt., 159, 391- 397 (2011). https://doi.org/10.1016/j.envpol.2010.10.039
  17. L. Yang, L. Zhu and L. Zhengtao, Chemosphere, 83, 806-814 (2011). https://doi.org/10.1016/j.chemosphere.2011.02.075
  18. J. E. Naile, J. S. Khim, T. Wang, C. Chen, W. Luo, B. O. Kwon, J. Park, C. H. Koh, P. D. Jones, Y. Lu and J. P. Giesy, Environ. Poll., 158, 1237-1244 (2010). https://doi.org/10.1016/j.envpol.2010.01.023
  19. C. L. Tseng, L. L. Liu, C. M. Chen and W. H. Ding, J. Chromatography A, 1105, 119-126 (2006). https://doi.org/10.1016/j.chroma.2005.07.052
  20. K. J. Hansen, H. O. Johnson, F. S. Eldridge, J. L. Butenhoff and L. A. Dick, Environ. Sci. Technol., 36, 1681- 1685 (2002). https://doi.org/10.1021/es010780r
  21. M. Clara, O. Gans, S. Weiss, D. Sanz-Escribano, S. Scharf and C. Scheffknecht, Water Res., 43, 4760-4768 (2009). https://doi.org/10.1016/j.watres.2009.08.004