DOI QR코드

DOI QR Code

Development and spectroscopic characteristics of the high-power wave guide He Plasma

도파관식 고출력 헬륨 플라즈마의 개발과 분광학적 특성 연구

  • Lee, Jong-Man (Department of Chemistry Education, Korea National University of Education) ;
  • Cho, Sung-Il (Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science) ;
  • Woo, Jin-Chun (Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science) ;
  • Pak, Yong-Nam (Department of Chemistry Education, Korea National University of Education)
  • 이종만 (한국교원대학교 화학교육과) ;
  • 조성일 (한국표준과학연구원 삶의질측정표준본부) ;
  • 우진춘 (한국표준과학연구원 삶의질측정표준본부) ;
  • 박용남 (한국교원대학교 화학교육과)
  • Received : 2012.05.13
  • Accepted : 2012.08.30
  • Published : 2012.10.25

Abstract

Okamoto cavity was modified to generate high power (2.45 GHz, 2 kW) He, N2 and Ar plasmas with WR-340 waveguide. Many factors which influence to the plasma generation were optimized and investigated for the spectroscopic properties of the He plasma generated. Some of the important factors are the diameter of the inner conductor, the distance between the inner and outer conductors and the distance between the tip of the inner conductor and the torch. After optimization for the He, two torches (a commercial mini torch for ICP and a tangential flow torch made locally) were compared and showed similar results for the helium plasma gas flow of 25 L/min~30 L/min. A tall torch (extended) was used to block the air in-flow and reduced the background intensity at 340 nm region (NH band). Emission intensity was measured for determination of halogen element in the aqueous solution with power and carrier gas flow rate. Electron number density and the excitation temperature were on the order of $3.67{\times}10^{11}/cm^3$ and 4,350 K, respectively. These values are similar or a bit smaller than other microwave plasmas. It has been possible to analyze aqueous samples. The detection limit for Cl (479.45 nm) was obtained to be 116 mg/L and needs analytical optimization for the better performance.

기존의 Okamoto cavity를 변형시킨 WR-340 도파관을 사용한 cavity를 제작하고 고출력(2.45 GHz, 2 kW)의 헬륨, 질소 및 아르곤 마이크로파 플라즈마(MIP; Microwave Induced Plasma)를 성공적으로 형성시켰다. 플라즈마 생성의 주요한 요인들은 내부전도체의 직경과 내부전도체와 외부전도체간의 간격, 내부전도체 끝과 토치의 위치 등이 있으며 그 중 헬륨 마이크로파 플라즈마에 대하여 cavity의 디자인을 최적화시키고 그 특성을 조사하였다. ICP(Inductively Coupled Plasma)용 mini 토치와 자체 제작한 나선형흐름토치를 비교 연구한 결과, 헬륨 플라즈마 기체 흐름량은 약 25 L/min~30 L/min로서 서로 비슷하였다. 토치 상단부에 석영관을 덧씌워 공기유입을 막은 결과, 340 nm 근처의 NH분자선들이 없어지거나 감소하였다. 플라즈마의 온도 및 전자밀도를 측정한 결과, 4,350 K의 들뜸 온도와 $3.67{\times}10^{11}/cm^3$의 전자밀도를 얻었다. 이 값들은 기존의 다른 마이크로파 플라즈마와 비슷하거나 약간 작은 값이다. 고출력의 플라즈마로서 수용액을 직접 분석하는 것이 가능하였고 현재 Cl의 검출한계는 116 mg/L 수준으로서 아직 분석적인 최적화가 필요한 단계이다.

Keywords

References

  1. C. I. M. Beenakker, B. Bosman and P. W. J. M. Boumans, Spectrochim. Acta, 33B, 373-381 (1978).
  2. K. G. Michlewicz and J. W. Carnahan, Anal. Chem., 57, 1092-1095 (1985). https://doi.org/10.1021/ac00283a029
  3. R. D. Deutsch and G. M. Hieftje, Appl. Spectrosc., 39, 214-222 (1985). https://doi.org/10.1366/0003702854248935
  4. M. Moisan, C. Beaudry and P. Leprince, IEEE transactions on Plasma Science, PS-3, 55-59 (1975).
  5. M. Moisan, R. Pantel, J. Hubert, E. Bloyet, P. Leprince, J. Marec and A. Ricard, J. Microwave Power, 14, 57-61 (1979). https://doi.org/10.1080/16070658.1979.11689129
  6. Q. Jin, C. Zhu, M. W. Borer and G. M. Hieftje, Spectrochim. Acta., 46B, 417-430 (1991).
  7. Q. Jin, H. Zhang, J. Anal. At. Spectrom., 9, 851-856 (1994). https://doi.org/10.1039/ja9940900851
  8. A. Besner and J. Hubert, Appl. Spectrosc., 52, 894-899 (1998). https://doi.org/10.1366/0003702981944454
  9. D. Boudreau and J. Hubert, Appl. Spectrosc., 47, 609-614 (1993). https://doi.org/10.1366/0003702934067234
  10. B. M. Spencer, B. W. Smith and J. D. Winefordner, Appl. Spectrosc., 48, 289-296 (1994). https://doi.org/10.1366/0003702944028326
  11. B. M. Spencer, A. R. Raghani, and J. D. Winefordner, Appl. Spectrosc., 48, 643-646 (1994). https://doi.org/10.1366/0003702944924763
  12. A. R. Hoskinson, J. Hopwood, N. W. Bostrom, J. A. Crank and C. Harrison, J. Anal. At. Spectrom., 26, 1258-65 (2011). https://doi.org/10.1039/c0ja00239a
  13. K. Jankowski, A. Ramsza, E. Reszke and M. Strzelec, J. Anal. At. Spectrom., 25, 44-47 (2010). https://doi.org/10.1039/b904428k
  14. A. Tyburska and K. Jankowski, Analytical Methods, 3, 659-663 (2011). https://doi.org/10.1039/c0ay00721h
  15. K. Jankowski, A. Jacowska, A. P. Ramsza and E. Reszke, J. Anal. At. Spectrom., 23, 1234-40 (2008). https://doi.org/10.1039/b803176b
  16. Y. Okamoto, Jpn. J. Appl. Phys., 38, L338-L341 (1999). https://doi.org/10.1143/JJAP.38.L338
  17. Y. Okamoto, M. Yasuda and S. Murayama, Jpn. J. Appl. Phys., 29, 670-672 (1990). https://doi.org/10.1143/JJAP.29.L670
  18. H. Yamada and Y. Okamoto, Appl. Spectrosc., 55, 114- 118 (2001). https://doi.org/10.1366/0003702011951623
  19. M. Ohata and N. Furuta, J. Anal. At. Spectrom., 12, 341-347 (1997). https://doi.org/10.1039/a605930i
  20. K. Ogura, H. Yamada, Y. Sato, and Y. Okamoto, Appl. Spectrosc., 51, 1496-1499 (1997). https://doi.org/10.1366/0003702971938984
  21. A. Matsumoto, A. Oheda and T. Nakahara, Anal. Sci., 17, 963-966. (2001). https://doi.org/10.2116/analsci.17.963
  22. Y. Okamoto, H. Murohashi and S. Wake, Anal. Sci., 17, 967-970. (2001).
  23. Z. Zhang and K. Wagatsuma, J. Anal. At. Spectrom., 17, 699-703 (2002). https://doi.org/10.1039/b202777c
  24. T. Maeda and K. Wagatsuma, Spectrochim. Acta., 60B, 81-87 (2005). https://doi.org/10.1016/j.sab.2004.10.011
  25. K. B. Cull and J. W. Carnahan, Appl. Spectrosc., 42, 1061-1065 (1988). https://doi.org/10.1366/0003702884430263
  26. Mingin Wu and J. W. Carnahan, Appl. Spectrosc., 46, 163-168 (1992). https://doi.org/10.1366/0003702924444489
  27. S. K. Chan, R. L. Van Hoven and A. Montaser, Anal. Chem., 58, 2342-2343 (1986). https://doi.org/10.1021/ac00124a050
  28. M. T. C. De Loos-Vollerbregt, J. J. Tiggelman and L. De Galan, Spectrochim. Acta., 43B, 773-781 (1988).
  29. D. J. Kalnicky, V. A. Fassel and R. N. Kniseley, Appl. Spectrosc., 31, 137-151 (1977). https://doi.org/10.1366/000370277774463832