DOI QR코드

DOI QR Code

Object Detection Using Predefined Gesture and Tracking

약속된 제스처를 이용한 객체 인식 및 추적

  • Bae, Dae-Hee (Dept. of Computer Engineering, Kwangwoon University) ;
  • Yi, Joon-Hwan (Dept. of Computer Engineering, Kwangwoon University)
  • 배대희 (광운대학교 컴퓨터공학과) ;
  • 이준환 (광운대학교 컴퓨터공학과)
  • Received : 2012.09.11
  • Accepted : 2012.09.25
  • Published : 2012.10.31

Abstract

In the this paper, a gesture-based user interface based on object detection using predefined gesture and the tracking of the detected object is proposed. For object detection, moving objects in a frame are computed by comparing multiple previous frames and predefined gesture is used to detect the target object among those moving objects. Any object with the predefined gesture can be used to control. We also propose an object tracking algorithm, namely density based meanshift algorithm, that uses color distribution of the target objects. The proposed object tracking algorithm tracks a target object crossing the background with a similar color more accurately than existing techniques. Experimental results show that the proposed object detection and tracking algorithms achieve higher detection capability with less computational complexity.

본 논문에서는 화면상 약속된 동작을 찾고 추적하는 알고리즘을 이용한 사용자 인터페이스를 제안한다. 현재 frame과 복수의 이전 frame간의 차영상을 이용하여 움직임 영역을 검출하고 약속된 제스처를 취하는 영역을 제어대상으로 인식한다. 이를 통하여 사용자가 장갑을 사용한다던지, 인종, 피부색등에 구애받지 않고 손동작 영역을 검출해 낼 수 있다. 또한 기존 색체 분포 추적 알고리즘을 개량하여 유사한 배경을 가로지르는 경우의 무게중심 위치의 정확성을 높였다. 그 결과 기존 피부색 인식 방법에 비해 약속된 손동작 인식률의 향상이 있었으며 기존 색체 추적 알고리즘에 비교하여 추적 인식률 향상을 확인할 수 있었다.

Keywords

References

  1. W.O.Galitz "The Essential Guide to User Interface Design," John Wiley & Sons Inc, pp. 127-129, 2007.
  2. Microsoft Xbox Kinect, http://www.xbox.com/ko-KR/Kinect?xr=shellnav
  3. LEAP leafmotion, http://www.leapmotion.com/
  4. J.H.Yun, and C.H.Lee, "Design of Computer Vision Interface by Recognizing Hand Motion," Journal of The Institute of Electronics Engineers of Korea, Vol. 47, No. 3, pp. 256-265, Apr 2010.
  5. A.Cheddad, J.Condell, K.Curran and M.Kevitt, "A Skin Tone Detection Algorithm for an Adaptive Approach to Steganography," in Proc. of Signal Processing, Vol. 89, No. 12, pp. 2465-2478, Dec 2009. https://doi.org/10.1016/j.sigpro.2009.04.022
  6. E. Stergiopoulou and N. Papamarkos, "Hand Gesture Recognition Using a Neural Network Shape Fitting Technique," in Proc Engineering Applications of Artificial Intelligence, Vol. 22, No. 8 pp. 1141-1158, Dec 2009. https://doi.org/10.1016/j.engappai.2009.03.008
  7. S.H.Kim, Y.H.Woo and K.E.Lee, "Implementation of Mouse Function Using Web Camera and Hand," Journal of the Korea society of computer and information, Vol. 15, No. 74, pp. 33-38, Apl 2010.
  8. Z.Pan, Y.Li, M.Zhang, C,Sun, K.Gou, X.Tang and S.Z.Zhou, "A Real-Time Multi-cue Hand Tracking Algorithm based on Computer Vision," in Proc 2010 IEEE Virtual Reality Conference, pp. 219-222, Mar 2010.
  9. Y.Fang, J.Cheng, J.Wang, K.Wang, J.Liu and H.Lu, "Hand Posture Recognition with Co-Traning," in Proc 19th International Conference on Pattern Recognition, pp. 1-4, Dec 2008.
  10. S.H.Lee, H.S.Han and Y.J.Han, "The Estimation of Hand Pose Based on Mean-Shift Tracking Using the Fusion of Color and Depth Information for Marker-less Augmented Reality," Journal of the Korea society of computer and information, Vol. 17, No. 7, pp. 155-166, Jul 2012. https://doi.org/10.9708/jksci.2012.17.7.155
  11. J.J.Young, K.H.Jang, J.H.Lee and J.S.Moon, "A Robust Method for the Recognition of Dynamic Hand Gestures based on DSTW," Journal of The Institute of Electronics Engineers of Korea, Vol. 47, No. 1, pp. 92-103, Jan 2010.
  12. J.Guo, Y.Liu, C.Chang and H.Nguyen, "Improved Hand Tracking System," IEEE Trans. on Circuits and System for Video Technology, Vol. 22, No. 5, pp. 693-701, May 2012. https://doi.org/10.1109/TCSVT.2011.2177192
  13. S.M.M.Roomi, R.J.Priya and H.Jayalakshmi, "Hand Gesture Recognition For Human-Computer Interaction". Journal of Computer Science, Vol. 6, No. 9, pp. 994-999, Jun 2010.
  14. Chan-Su Lee and Shin-Won Park, "Tracking Hand Rotation and Grasping from an IR Camera Using Cylindrical Manifold Embedding," in Proc of 2010 ICPR, pp.2612-2615, Aug 2010.
  15. Van den Bergh,M and Van Gool, L, "Combining RGB and ToF Cameras for Real-Time 3D Hand Gesture Interaction," in Proc. of IEEE Workshop on Application of Computer Vision(WACV), pp. 66-72, Jan 2011.
  16. J.H.Kim, N.D.Thang and T.S.Kim, "3-D Hand Motion Tracking and Gesture Recognition Using a Data Glove," in Proc. of IEEE Symposium on Industrial Electronic, pp. 1013-1018, Jul 2009.
  17. J.L. Barron, D.J. Fleet and S.S. Beauchemin, "Performance of Optical Flow Techniques," Proc of Internatioal Journal of Computer Vision, pp. 236-242, Jun 1994.
  18. G.R.Bradski, "Computer Vision Face Tracking for Use in a Perceptual User Interface," in Proc Interface, Vol.2, No.2, pp.12-21, Feb 1998.
  19. R.Stolkin, I.Florescu, M.Baron, C.Harriar and B.Kocherov, "Efficient Visual Servoing with the ABCshift Tracking Algorithm," in Proc IEEE ICRA 2008, pp. 19-23, May 2008.
  20. A.J.Lipton, H.Fujiyoshi and R.S.Patil, "Moving Target Classification and Tracking from Real Time Video," in Proc IEEE WACV'98, pp. 8-14, Oct 1998
  21. Z.Zivkovic, "Improved Adaptive Gaussian Mixture Model for Background Subtraction," in Proc ICPR'2004, pp. 28-31, Aug 2004
  22. M. Ester, H.P. Kriegel, J. Sander, and X. Xu, "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise," Proc. of 2nd International Conference on Knowledge Discovery and Data Mining. FLEXChip Signal Processor, pp. 226-231, Jun 1996.
  23. M. Elmezain, A. Al-Hamadi, and B. Michaelis, "Real-time Capable System for Hand Gesture Recognition Using Hidden Markov Models in Stereo Color Image Sequences," The Journal of conferences in Central Europe on Computer Graphics, Vol. 16, No. 1, pp. 65-72, Jan 2008.
  24. S.Y.Park, E.J.Lee, "Hand Gesture Recognition Algorithm Robust to Complex Image," Journal of Korea Multimedia Society, Vol. 13, No. 7, pp. 1000-1015, Jul 2010.