References
- Bang, S. and Jhun, M. (2012a). Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization, Computational Statistics and Data Analysis, 56, 813-826 . https://doi.org/10.1016/j.csda.2011.01.026
- Bang, S. and Jhun, M. (2012b). Adaptive sup-norm regularized simultaneous multiple quantiles regression, Statistics, accepted for publication.
- Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273
- Hastie, T., Tibshirani, R. and Friedman, J. (2001). The Elements of Statistical Learning, Springer-Verlag, New York.
- Hoerl, A. and Kennard, R. (1970). Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 12, 55-67. https://doi.org/10.1080/00401706.1970.10488634
- Kaufman, L. and Rousseeuw, P. J. (1990). Finding Groups in Data: An Introduction to Cluster Analysis, Wiley, New York.
- Leng, C., Lin, Y. and Wahba, G. (2006). A note on lasso and related procedures in model selection, Statistica Sinica, 16, 1273-1284.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society, Series B, 58, 267-288.
- Vapnik, V. (1995). The Nature of Statistical Learning Theory, Springer-Verlag, New York.
- Wang, H. and Leng, C. (2008). A note on adaptive group lasso, Computational Statistics and Data Analysis, 52, 5277-5286. https://doi.org/10.1016/j.csda.2008.05.006
- Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society, Series B, 68, 49-67. https://doi.org/10.1111/j.1467-9868.2005.00532.x
- Yuan, M. and Lin, Y. (2007). On the nonnegative garrote estimator, Journal of the Royal Statistical Society, Series B, 69, 143-161. https://doi.org/10.1111/j.1467-9868.2007.00581.x
- Zhang, H., Liu, Y., Wu, Y. and Zhu, J. (2008). Variable selection for multicategory svm via sup-norm regularization, Electronic Journal of Statistics, 2, 149-167. https://doi.org/10.1214/08-EJS122
- Zhao, P., Rocha, G. and Yu, B. (2009). The composite absolute penalties family for grouped and hierarchical variable selection, The Annals of Statistics, 37, 3468-3497. https://doi.org/10.1214/07-AOS584
- Zhu, J., Rosset, S., Hastie, T. and Tibshirani, R. (2003). 1-norm support vector machine, Neural Information Proceeding Systems, 16.
- Zou, H. (2006). The adaptive lasso and its oracle properties, Journal of the American Statistical Association, 101, 1418-1429. https://doi.org/10.1198/016214506000000735
- Zou, H. (2007). An improved 1-norm SVM for simultaneous classification and variable selection, In Proceedings of the 11th International Conference on Articial Intelligence and Statistics.
-
Zou, H. and Yuan, M. (2008). The
$F_{\infty}$ -norm support vector machine, Statisitca Sinica, 18, 379-398.
Cited by
- Hierarchically penalized support vector machine for the classication of imbalanced data with grouped variables vol.29, pp.5, 2016, https://doi.org/10.5351/KJAS.2016.29.5.961