DOI QR코드

DOI QR Code

식품의 원산지 판별분석

Discrimination Analysis of the Geographical Origin of Foods

  • 최진영 (한북대학교 식품영양학과) ;
  • 방경환 (농촌진흥청 국립원예특작과학원 인삼특작부) ;
  • 한기영 (서울여자대학교 식품공학과) ;
  • 노봉수 (서울여자대학교 식품공학과)
  • Choi, Jin-Young (Department of Food and Nutritional Sciences, Hanbuk University) ;
  • Bang, Kyong-Hwan (Ginseng Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Han, Kee-Young (Department of Food Science and Technology, Seoul Women's University) ;
  • Noh, Bong-Soo (Department of Food Science and Technology, Seoul Women's University)
  • 투고 : 2012.07.23
  • 심사 : 2012.09.20
  • 발행 : 2012.10.31

초록

Consumers are increasingly concerned about the origin of foods, so the geographical origin of foods has been a major topic of debate and extensive research. Various instrumental methods (e.g. high performance liquid chromatography (HPLC), gas chromatography (GC), capillary electrophoresis (CE), electronic nose, near-infrared spectroscopy (NIRS), nuclear magnetic resonance spectroscopy (NMR), DNA analysis, multi-isotope analysis) in conjunction with statistical analysis, were developed and applied in attempt to provide reliable answers to their geographical origin. This study reviews current developments in the application of various methods for a clear geographical origin of foods. The limitation of discrimination analysis for geographical origin was also discussed.

키워드

참고문헌

  1. Park SY, Oh SS. Analysis of multiple pesticide residues in raw materials used in dietary supplements by GC/ECD and NPD. Korean J. Food Sci. Technol. 36: 863-871 (2004)
  2. Jeong MS, Lee SB. Discrimination of geographical origin for herbal medicine by mineral content analysis with energy dispersive X-ray fluorescence spectrometer. Korean J. Food Sci. Technol. 40: 135-140 (2008)
  3. Luykx DMAM, van Ruth SM. An overview of analytical methods for determining the geographical origin of food products. Food Chem. 107: 897-911 (2008) https://doi.org/10.1016/j.foodchem.2007.09.038
  4. Nam HY, Lee KT. Analysis of characterization in commercial extra virgin olive oils. J. Korean Soc. Food Sci. Nutr. 36: 866- 873 (2007) https://doi.org/10.3746/jkfn.2007.36.7.866
  5. Jung MJ, Heo SI, Wang MH. Comparative studies for component analysis in acorn powders from Korea and China. Korean J. Pharmacogn. 38: 90-94 (2007)
  6. Stanimirova I, Üstün B, Cajka T, Riddelova K, Hajslova J, Buydens LMC, Walczak B. Tracing the geographical origin of honeys based on volatile compounds profiles assessment using pattern recognition techniques. Food Chem. 118: 171-176 (2010) https://doi.org/10.1016/j.foodchem.2009.04.079
  7. Hodgins D, Simmonds D. Sensory technology for flavor analysis. Cereal Food World 40: 186-191 (1995)
  8. Choi HD. Use and development of sensation sensor. Bull. Food Technol. 8: 122-131 (1995)
  9. Kim SL. Flavor analysis of food by electronic nose. Food Sci. Indus. 30: 126-133 (1997)
  10. Zimmermann M, Schieberle, P. Important odorants of sweet bell pepper powder (Capsicum annuum cv. annuum): Differences between samples of Hungarian and Morrocan origin. Eur. Food Res. Technol. 211: 175-180 (2000) https://doi.org/10.1007/s002170050019
  11. Kang MR, Lee IH, Jun H, Kim YS, Lee SC. Elemental analysis in Astragali Radix by using ICP-AES and determination of the original agricultural place of oriental medicine by using a chemometrics. Anal. Sci. Technol. 14: 316-321 (2001)
  12. Rhyu MR, Kim EY, Kim SS. Identification of cultivate sites for Job's-tears (Coix lachrymajobi var. mayuen) using capillary electrophoresis. Korean J. Food Sci. Technol. 34: 787-791 (2002)
  13. Kim EY, Kim. JH, Lee NY, Kim SJ, Rhyu MR. Discrimination of geographical origin for astragalus root (Astragalus membranaceus) by capillary electrophoresis and near-infrared spectroscopy. Korean J. Food Sci. Technol. 35 : 818-824 (2003)
  14. Kim YS, Scotter C, Voyiagis M, Hall M. Potential of NIR spectroscopy for discriminating the geographical origin of green tea from Korea and Japan. Food Sci. Biotechnol. 6: 74-78 (1997)
  15. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314-331 (1980)
  16. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of Dna in vitro: The polymerase chain reaction. Cold Spring Harb. Sym. 51: 263-273 (1986) https://doi.org/10.1101/SQB.1986.051.01.032
  17. Williams JGK, Kubebelik AR, Licak AJ, Ratalski JA, Tingey SV. DNA Polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535 (1990) https://doi.org/10.1093/nar/18.22.6531
  18. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: A new techniques for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414 (1995) https://doi.org/10.1093/nar/23.21.4407
  19. Paran I, Michelmore W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet. 85: 985-993 (1993)
  20. Britten RJ, Kohne DE. Repeated sequences in DNA. Science 161: 529-540 (1968) https://doi.org/10.1126/science.161.3841.529
  21. Hamada SR, Petrino MG, Kakunaga T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. P. Nat. Acad. Sci. 79: 6465-6469 (1982) https://doi.org/10.1073/pnas.79.21.6465
  22. Trautz D, Renz M. Simple sequence are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 12: 4127- 4138 (1984) https://doi.org/10.1093/nar/12.10.4127
  23. Garbeva P, Overbeek LS, Vuurde JW, Elsas JD. Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb. Ecol. 41: 369-383 (2001) https://doi.org/10.1007/s002480000096
  24. Olsen M, Hood L, Cantor C, Botstein D. A common language for physical mapping of the human genome. Science 245: 1434- 1435 (1989) https://doi.org/10.1126/science.2781285
  25. Taurino A, Momaco DD, Capone S, Epifani M, Rella R, Sicilino P, Ferrara L, Mglione G, Basso A, Balzarano D. Analysis of dry salami by means of an electronic nose and correlation with microbiological methods. Sensor. Actuat. B-Chem. 95: 123-131 (2003) https://doi.org/10.1016/S0925-4005(03)00421-0
  26. Cynkar W, Dambergs R, Smith P, Cozzolino D. Classification of Tempranillo wines according to geographic origin: Combination of mass spectrometry based electronic nose and chemometrics. Anal. Chim. Acta 660: 227-231 (2010) https://doi.org/10.1016/j.aca.2009.09.030
  27. Oh SY, Noh BS. Pattern analysis of volatile components for domestic and imported Cnidium officinale using GC based on SAW sensor. Korean J. Food Sci. Technol. 35: 994-997 (2003)
  28. Noh BS, Oh SY, Kim SJ. Pattern analysis of volatile components for domestic and imported Agelica gigas Nakai using GC based on SAW sensor. Korean J. Food Sci. Technol. 35: 144-148 (2003)
  29. Lee NY, Bae HR, Lim CL, Noh BS. Discrimination of geographical origin of mushroom (Tricholoma matsutake) using electronic nose based on mass spectrometry. Food Eng. Prog. 10: 275-279 (2006)
  30. Lamanna R, Cattivelli L, Miglietta ML, Troccoli A. Geographical origin of durum wheat studied by 1H-NMR profiling, Magn. Reson. Chem. 49: 1-5 (2011) https://doi.org/10.1002/mrc.2695
  31. Rho JH, Lee SM. Discriminating the geographical origin of sesame seeds by low field NMR. Korean J. Food Sci. Technol. 34: 1062-1066 (2002)
  32. Kelly S, Heaton K, Hoogewerff J. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends Food Sci. Tech. 16: 555-567 (2005) https://doi.org/10.1016/j.tifs.2005.08.008
  33. Noh BS, Kim SJ. Discrimination of the habitat Platycodon using electronic nose and X-ray fluorescence spectrometer. Daesan Nonchong 9: 145-150 (2001)
  34. Cho CH, Kim SJ, Kim HJ. Comparative studies on the discrimination of Angelica gigantis radix by near-infrared spectroscopy, electronic nose, and X-ray fluorescence spectrometer. Yakhak Hoechi 46: 161-167 (2002)
  35. Hegerding L, Seidler D, Danneel HJ, Gessler A, Nowak B. Oxygen isotope-ratio-analysis for the determination of the origin of beef. Fleischwirtschaft 82: 95-100 (2002)
  36. Hintze KJ, Lardy GP, Marchello MJ, Finley JW. Selenium accumulation in beef: Effect of dietary selenium and geographical area of animal origin. J. Agr. Food Chem. 50: 3938-3942 (2002) https://doi.org/10.1021/jf011200c
  37. Boner M, Förstel H. Stable isotope variation as a tool to trace the authenticity of beef. Anal. Bioanal. Chem. 378: 301-310 (2004) https://doi.org/10.1007/s00216-003-2347-6
  38. Renou JP, Bielicki G, Deponge C, Gachon P, Micol D, Ritz P. Characterization of animal products according to geographic origin and feeding diet using nuclear magnetic resonance and isotope ratio mass spectrometry. Part II: Beef meat. Food Chem. 86: 251-156 (2004)
  39. Piasentier E, Valusso R, Camin F, Versini G. Stable isotope ratio analysis for authentication of lamb meat. Meat Sci. 64: 239-247 (2003) https://doi.org/10.1016/S0309-1740(02)00183-3
  40. Kornexl BE, Werner T, Rossmann A, Schmidt HL. Measurement of stable isotope abundances in milk and milk ingredients - A possible tool for origin assignment and quality control. Eur. Food Res. Technol. 205: 19-24 (1997)
  41. Renou JP, Deponge C, Gachon P, Bonnefoy JC, Coulon JB, Garel JP, Verite R, Ritz P. Characterization of animal products according to geographic origin and feeding diet using nuclear magnetic resonance and isotope ratio mass spectrometry: Cow milk. Food Chem. 85: 63-66 (2004) https://doi.org/10.1016/j.foodchem.2003.06.003
  42. Ritz P, Gachon P, Garel JP, Bonnefoy JC, Coulon JB, Renou JP. Milk characterization: Effect of the breed. Food Chem. 91: 521- 523 (2005) https://doi.org/10.1016/j.foodchem.2004.06.041
  43. Rossmann A, Haberhauer G, Hölzl S, Horn P, Pichlmayer F, Voerkelius S. The potential of multielement stable isotope analysis for regional origin assignment of butter. Eur. Food Res. Technol. 211: 32-40 (2000) https://doi.org/10.1007/s002170050585
  44. Balling HP, Rossmann A. Countering fraud via isotope analysis- Case report. Kriminalistik 58: 44-47 (2004)
  45. Manca G, Camin F, Coloru GC, Del Caro A, Depentori D, Franco MA, Versini G. Characterization of the geographical origin of Pecorino Sardo cheese by casein stable isotope ($^{13}C$/$^{12}C$ and $^{15}N$/$^{14}N$) ratios and free amino acid ratios. J. Agr. Food Chem. 49: 1404-1409 (2001) https://doi.org/10.1021/jf000706c
  46. Pillonel L, Badertscher R, Froidevaux P, Haberhauer G, Hölzl S, Horn P, Jakob A, Pfammatter E, Piantini U, Rossmann A, Tabacchi R, Bosset JO. Stable isotope ratios, major, trace, and radioactive elements in emmental cheeses of different origins. LWT Food Sci. Technol. 36: 615-623 (2003) https://doi.org/10.1016/S0023-6438(03)00081-1
  47. Pillonel L, Butikofer U, Rossmann A, Tabacchi R. Bosset JO. Analytical methods for the detection of adulteration and mislabelling of Raclette $Suisse^{(R)}$ and Fontina PDO cheese. Mitt. Lebensm. Hyg. 95: 489-502 (2004)
  48. Fortunato G, Mumic K, Wunderli S, Pillonel L, Bosset JO, Gremaud G. Application of strontium isotope abundance ratios measured by MC-ICP-MS for food authentication. J. Anal. Atom. Spectrom. 19: 227-234 (2004) https://doi.org/10.1039/b307068a
  49. Camin F, Wietzerbin K, Cortes AB, Haberhauer G, Lees M, Versini G. Application of multielement stable isotope ratio analysis to the characterization of French, Italian, and Spanish cheeses. J. Agr. Food Chem. 52: 6592-6601 (2004) https://doi.org/10.1021/jf040062z
  50. Krivan V, Barth P, Morales AF. Multielement analysis of green coffee and its possible use for the determination of origin. Microchim. Acta 110: 217-236 (1993) https://doi.org/10.1007/BF01245106
  51. Haswell SJ, Walmsley AD. Multivariate data visualisation methods based on multi-elemental analysis of wines and coffees using total reflection X-ray fluorescence analysis. J. Anal. Atom. Spectrom. 13: 131-134 (1998) https://doi.org/10.1039/a705317g
  52. Weckerle B, Richling E, Heinrich S, Schreier P. Origin assessment of green coffee (Coffea arabica) by multi-element stable isotope analysis of caffeine. Anal. Bioanal. Chem. 374: 886-890 (2002) https://doi.org/10.1007/s00216-002-1560-z
  53. Fernandez-Caceres PL, Martín MJ, Pablos F, Gonzalez AG. Differentiation of tea (Camellia sinensis) varieties and their geographical geographical origin according to their metal content. J. Agr. Food Chem. 49: 4775-4779 (2001) https://doi.org/10.1021/jf0106143
  54. Moreda-Pineiro A, Marcos A, Fisher A, Hill SJ. Evaluation of the effect of data pre-treatment procedures on classical pattern recognition and principal components analysis: A case study for the geographical classification of tea. J. Environ. Monitor. 3: 352- 360 (2001) https://doi.org/10.1039/b103658k
  55. Moreda-Piñeiro A, Fisher A, Hill SJ. The classification of tea according to region of origin using pattern recognition techniques and trace metal data. J. Food Compos. Anal. 16: 195-211 (2003) https://doi.org/10.1016/S0889-1575(02)00163-1
  56. Simpkins WA, Louie H, Wu M, Harrison M, Goldberg D. Trace elements in Australian orange juice and other products. Food Chem. 71: 423-433 (2000) https://doi.org/10.1016/S0308-8146(00)00150-3
  57. Simpkins WA, Patel G, Harrison M, Goldberg D. Stable carbon isotope ratio analysis of Australian orange juices. Food Chem. 70: 385-390 (2000) https://doi.org/10.1016/S0308-8146(00)00086-8
  58. Yasui A, Shindoh K. Determination of the geographic origin of brown-rice with trace-element composition. Bunseki Kagaku 49: 405-410 (2000) https://doi.org/10.2116/bunsekikagaku.49.405
  59. Oda H, Kawasaki A, Hirata T. Determining the rice provenance using binary isotope signatures along with cadmium content. pp. 2018-1 to 2018-10. In: the 17th World Congress of Soil Science, Symposium No. 59 2002. August 14-21, Thailand (2002)
  60. Kelly S, Baxter M, Chapman S, Rhodes C, Dennis J, Brereton P. The application of isotopic and elemental analysis to determine the geographical origin of premium long grain rice. Eur. Food Res. Technol. 214: 72-78 (2002) https://doi.org/10.1007/s002170100400
  61. Kawasaki A, Oda H, Hirata T. Determination of strontium isotope ratio of brown rice for estimating its provenance. Soil Sci. Plant Nutr. 48: 635-640 (2002) https://doi.org/10.1080/00380768.2002.10409251
  62. Brescia MA, Di Martino G, Fares C, Di Fonzo N, Platani C, Ghelli S, Reniero F, Sacco A. Characterization of Italian durum wheat semolina by means of chemical analytical and spectroscopic determinations. Cereal Chem. 79: 238-242 (2002) https://doi.org/10.1094/CCHEM.2002.79.2.238
  63. Brescia MA, Di Martino G, Guillou C, Reniero F, Sacco A, Serra F. Differentiation of the geographical origin of durum wheat semolina samples on the basis of isotopic composition. Rapid Commun. Mass Sp. 16: 2286-2290 (2002) https://doi.org/10.1002/rcm.860
  64. Branch S, Burke S, Evans P, Fairman B, Briche CSJW. A preliminary study in determining the geographical origin of wheat using isotope ratio inductively coupled plasma mass spectrometry with $^{13}C$, $^{15}N$ mass spectrometry. J. Anal. Atom. Spectrom. 18: 17-22 (2003) https://doi.org/10.1039/b207055n
  65. Horn P, Schaaf P, Holbach B, Holzl S, Eschnauer H. $^{87}Sr$/$^{86}Sr$from rock and soil into wine and wine. Eur. Food Res. Technol. 196: 407-409 (1993)
  66. Breas O, Reniero F, Serrini G, Martin GJ, Rossmann A. Isotope ratio mass spectrometry: Analysis of wines from different european countries. Rapid Commun. Mass Spectrom. 8: 967-970 (1994) https://doi.org/10.1002/rcm.1290081212
  67. Day MP, Zhang BL, Martin GJ. The use of trace element data to complement stable-isotope methods in the characterization of grape musts. Am. J. Enol. Viticult. 45: 79-85 (1994)
  68. Day MP, Zhang BL, Martin GJ. Determination of the geographical origin of wine using joint analysis of elemental and isotopic composition. II. Differentiation of the principal production zones in France for the 1990 vintage. J. Sci. Food Agr. 67: 113-123 (1995) https://doi.org/10.1002/jsfa.2740670118
  69. Baxter MJ, Crews HM, Dennis MJ, Goodall I, Anderson D. The determination of the authenticity of wine from its trace element composition. Food Chem. 60: 443-450 (1997) https://doi.org/10.1016/S0308-8146(96)00365-2
  70. Horn P, Hölzl S, Todt W, Matthies D. Isotope abundance ratios of Sr in wine provenance determinations, in a tree-root activity study, and of Pb in a pollution study on tree-rings. Isot. Environ. Healt. S. 33: 31-42 (1997) https://doi.org/10.1080/10256019708036329
  71. Rossmann A, Reniero F, Moussa I, Schmidt H-L, Versini G, Merle MH. Stable oxygen isotope content of water of EU databank wines from Italy, France, and Germany. Eur. Food Res. Technol. 208: 400-407 (1999)
  72. Almeida CM, Vasconcelos MTSD. ICP-MS determination of strontium isotope ratio in wine in order to be used as a fingerprint of its regional origin. J. Anal. Atom. Spectrom. 16: 607-611 (2001) https://doi.org/10.1039/b100307k
  73. Barbaste M, Halicz L, Galy A, Medina B, Emteborg H, Adams FC. Lobinski R. Evaluation of the accuracy of the determination of lead isotope ratios in wine by ICP MS using quadrupole, multicollector magnetic sector and time-of-flight analyzers. Talanta 54: 307-317 (2001) https://doi.org/10.1016/S0039-9140(00)00651-2
  74. Kosir IJ, Kochancic M, Ogrinc N, Kidric J. Use of SNIF-NMR and IRMS in combination with chemometric methods for the determination of chaptalisation and geographical origin of wines (the example of Slovenian wines). Anal. Chim. Acta 429: 195- 206 (2001) https://doi.org/10.1016/S0003-2670(00)01301-5
  75. Barbaste M, Robinson K, Guilfoyle S, Medina B, Lobinski R. Precise determination of the strontium isotope ratios in wine by inductively coupled plasma sector field multicollector mass spectrometry (ICP-SF-MC-MS). J. Anal. Atom. Spectrom. 17: 135- 137 (2002) https://doi.org/10.1039/b109559p
  76. Christoph N, Rossmann A, Voerkelius S. Possibilities and limitations of wine authentication using stable isotope and meteorological data, data banks, and statistical tests. Part 1: Wines from Franconia and Lake Constance 1992 to 2001. Mitteilungen Klosterneuberg 53: 23-40 (2003)
  77. Christoph N, Barátossy G, Kubanovic V, Kozina B, Rossmann A, Schlicht C, Voerkelius S. Possibilities and limitations of wine authentication using stable isotope ratio analysis and traceability. Part 2: Wines from Hungary, Croatia and other European countries. Mitteilungen Klosterneuberg 54: 144-158 (2004)
  78. Brescia MA, Kosir IJ, Caldarola V, Kidric J, Sacco A. Chemometric classification of Apulian and Slovenian wines using 1H NMR and ICP-OES together with HPICE data. J. Agr. Food Chem. 51: 21-26 (2003) https://doi.org/10.1021/jf0206015
  79. Almeida CMR, Vasconcelos MTSD. Does the winemaking process influence the wine 87Sr/86Sr? A case study. Food Chem. 85: 7-12 (2004) https://doi.org/10.1016/j.foodchem.2003.05.003
  80. Gremaud G, Quaile S, Piantini U, Pfammatter E, Corvi C. Characterization of Swiss vineyards using isotopic data in combination with trace elements and classical parameters. Eur. Food Res. Technol. 219: 97-104 (2004) https://doi.org/10.1007/s00217-004-0919-0
  81. Anklam E. A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chem. 63: 549- 562 (1998) https://doi.org/10.1016/S0308-8146(98)00057-0
  82. Anderson KA, Magnuson BA, Tschirgi ML, Smith B. Determining the geographic origin of potatoes with trace metal analysis using statistical and neural network classifiers. J. Agr. Food Chem. 47: 1568-1575 (1999) https://doi.org/10.1021/jf980677u
  83. Breas O, Guillou C, Reniero F, Sada, E, Angerosa F. Oxygen-18 measurement by continuous flow pyrolysis/isotope ratio mass spectrometry of vegetable oils. Rapid Commun. Mass Spectrom. 12: 188-192 (1998) https://doi.org/10.1002/(SICI)1097-0231(19980227)12:4<188::AID-RCM137>3.0.CO;2-7
  84. Angerosa F, Breas O, Contento S, Guillou C, Reniero F, Sada E. Application of stable isotope ratio analysis to the characterization of the geographical origin of olive oils. J. Agr. Food Chem. 47: 1013-1017 (1999) https://doi.org/10.1021/jf9809129
  85. Won JG, Ahn DJ, Kim SJ, Park SD, Choi KB, Lee SC, Son JK. Comparison of grain quality between Chinese parboiled and domestic rice. Korean J. Crop. Sci. 50: 19-23 (2005)
  86. Ariyama K, Shinozaki M, Kawasaki A, Ishida Y. Strontium and lead isotope analyses for determining the geographic origins of grains. Anal. Sci. 27: 709-713 (2011) https://doi.org/10.2116/analsci.27.709
  87. Zhao H, Guo B, Wei Y, Zhang B, Sun S, Zhang L, Yan J. Determining the geographic origin of wheat using multielement analysis and multivariate statistics. J. Agric. Food Chem. 59: 4397- 4402 (2011) https://doi.org/10.1021/jf200108d
  88. Longobardi F, Casiello G, Sacco D, Tedone L, Sacco A. Characterisation of the geographical origin of Italian potatoes, based on stable isotope and volatile compound analyses. Food Chem. 124: 1708-1713 (2011) https://doi.org/10.1016/j.foodchem.2010.07.092
  89. Noh JH, Lee SM, Kim YB, Lee TS. Discriminating domestic soybeans from imported soybeans by 20 MHz pulsed NMR. Korean J. Food Sci. Technol. 35: 653-659 (2003)
  90. Lee JH, Choung MG. Comparison of nutritional components in soybean varieties with different geographical origins. J. Korean Soc. Appl. Biol. Chem. 54: 254-263 (2011) https://doi.org/10.3839/jksabc.2011.040
  91. Kwon YK, Cho RK. Identification of geographical origin of sesame seeds by near infrared spectroscopy. Agric. Chem. Biotechnol. 41: 240-246 (1998)
  92. Kwon YJ, Lee JG, Deng KY, Lee GH, Oh MJ. The odor discriminents analysis and flavor comparison of Korean and Chinese sesame oils. Korean J. Postharv. Sci. Technol. 6: 200-205 (1999)
  93. Cho IH, Choi HK, Kim YS. Difference in the volatile composition of pine-mushrooms (Tricholoma matsutake Sing.) according to their grades. J. Agr. Food Chem. 54: 4820-4825 (2006) https://doi.org/10.1021/jf0601416
  94. Lee SS, Hong SW. The 18S rDNA sequence of the basidiocarps of Tricholoma matsutake in Korea. Korean J. Mycol. 26: 256-264 (1998)
  95. Lee NY, Bae HR, Noh BS. Discrimination of geographical origin of mushroom (Tricholoma matsutake) using near infrared spectroscopy. Korean J. Food Sci. Technol. 38: 835-837 (2006)
  96. Lee DC, Lee SY, Cha SH, Choi YS, Rhee HI. Discrimination of native bee-honey and foreign bee-honey by SDS-PAGE. Korean J. Food Sci. Technol. 30: 1-5 (1998)
  97. Benedetti S, Mannino S, Saatini AG, Marcazzan GL. Electonic nose and neutral network use for the classification of honey. Apidologie 35: 1-6 (2004) https://doi.org/10.1051/apido:2004060
  98. Lammertyn J, Veraverbeke EA, Irudayaraj J. Z-$nose^{TM}$ technology for the classification of honey based on rapid aroma profiling. Sensor. Actuat. B-Chem. 98: 54-53 (2004) https://doi.org/10.1016/j.snb.2003.09.012
  99. Wei Z, Wang J, Wang Y. Classification of monofloral honeys from different floral origins and geographical origins based on rheometer, J. Food Eng. 96: 469-479 (2010) https://doi.org/10.1016/j.jfoodeng.2009.08.028
  100. Paramas AMG, Barez JAG, Garcia-Villanova RJ, Pala TR, Albajar RA, Sanchez JS. Geographical discrimination of honeys by using mineral composition and common chemical quality parameters. J. Sci. Food Agr. 80: 157-165 (2000) https://doi.org/10.1002/(SICI)1097-0010(20000101)80:1<157::AID-JSFA506>3.0.CO;2-B
  101. Necemer M, Kosir IJ, Kump P, Kropf U, Jamnik M, Bertoncelj J. Application of total reflection X-ray spectrometry in combination with chemometric methods for determination of the botanical origin of Slovenian honey. J. Agr. Food Chem. 57: 4409- 4414 (2009) https://doi.org/10.1021/jf900930b
  102. Kropf U, Korošec M, Bertoncelj J, Ogrinc N, Necemer M, Kump P, Golob T. Determination of the geographical origin of Slovenian black locust, lime, and chestnut honey. Food Chem. 121: 839-846 (2010) https://doi.org/10.1016/j.foodchem.2009.12.094
  103. Hong EJ, Park SJ, Lee HJ, Lee KG, Noh BS. Analysis of various honeys from different sources using electronic nose. Korean J. Food Sci. An. Resour. 31: 273-279 (2011) https://doi.org/10.5851/kosfa.2011.31.2.273
  104. Damiani N, Fernandez NJ, Maldonado LM, Alvarez AR, Eguaras MJ, Marcangeli JA. Bioactivity of propolis from different geographical origins on Varroa destructor (Acari:Varroidae). Parasitol. Res. 107: 31-37 (2010) https://doi.org/10.1007/s00436-010-1829-7
  105. Lee CS, Yoo YB, Na KJ, Cho BD, Choe BK. Breed identification of Korean native cattle by DNA polymorphic analysis. Korean J. Anim. Sci. 36: 369-373 (1994)
  106. Kim KS, Eum JH, Choi CB. Genetic diversity of Korean cattle using microsatellite analysis. J. Anim. Sci. Technol. 43: 599-608 (2001)
  107. Seo KS, Cho YM, Lee HK. Development of network system for the application of HACCP in livestock production stage. Agrolnformatics J. 1: 1-4 (2000)
  108. Lee HK, Jeon GJ, Kong HS, Oh JD, Choi IS, Kim CD, Jo CY, Yoon DH, Shin HD, Lee JH. Application of DNA test for individual traceability in hanwoo (Korean cattle). Korean J. Food Sci. Ani. Resour. 24: 8-14 (2004)
  109. Chung ER, Chung KY. Identification of beef breed using DNA marker of coat color genes. Korean J. Food Sci. Ani. Resour. 24: 355-360 (2004)
  110. Kim G, Lee KJ, Choi KH, Choi DS, Son JR, Kang, S, Chag YC. Odor analysis for beef freshness estimation with electronic nose. J. Biosystems Eng. 29: 317-322 (2004) https://doi.org/10.5307/JBE.2004.29.4.317
  111. Lim CL, Son HJ, Hong EJ, Noh BS. Discrimination of geographical origin of beef using electronic nose based on mass spectrometer. Korean J. Food Sci. Technol. 40: 717-720 (2008)
  112. Jung YA, Lee JU, Kwon J, Lee KS, Ryu DH, Hwang GS. Discrimination of the geographical origin of beef by 1H NMR-based metabolomics. J. Agric. Food Chem. 58: 10458-10466 (2010) https://doi.org/10.1021/jf102194t
  113. Bong YS, Shin WJ, Lee AR, Kim YS, Kim K, Lee KS. Tracing the geographical origin of beefs being circulated in Korean markets based on stable isotopes. Rapid Commun. Mass Spectrom. 24: 155-159 (2010) https://doi.org/10.1002/rcm.4366
  114. Sun S, Guo B, Wei Y, Fan M. Multi-element analysis for determining the geographical origin of mutton from different regions of China. Food Chem. 124: 1151-1156 (2011) https://doi.org/10.1016/j.foodchem.2010.07.027
  115. Yu YM, Chae HS, Park BY, Cho SH, Ahn JN, Kim DH, Lee JM. Color property of imported and domestic chicken(abstract no P-141). pp. 287-290 In: Abstracts: 33th Annual Conference of the Korean Society for Food Science of Animal Resource. June 28, New millenium hall in KonKuk University, Seoul, Korea. Korean Society for Food Science of Animal Resources, Seoul, Korea (2004)
  116. Kang DJ, Lee SG, Jin DH, Choi SJ. Random amplified polymorphic DNA analysis for origin identification of olive flounder (Paralichthys olivaceus) and redlip croaker (Pseudosciaena polyactis). J. Life Sci. 16: 88-94 (2006) https://doi.org/10.5352/JLS.2006.16.1.088
  117. Song IS, Jin DH, Choi SJ, Lee SG. Polymorphism analysis of the ND-4 gene for the origin determination of olive flounder, Paralichthys olivaceus. J. Life Sci. 16: 627-635 (2004) https://doi.org/10.5352/JLS.2004.14.4.627
  118. Cho ML, Heu MS, Kim JS. Food component characteristic of cuttle bone as a mineral source. J. Korean Fish. Soc. 34: 478- 482 (2001)
  119. Heo OS, Oh SH, Shin HS, Kim MR. Mineral and heavy metal contents of salt and salted-fermented shrimp. Korean J. Food Sci. Technol. 37: 519-524 (2005)
  120. Park JW, Kim SJ, Kim SH, Kim BH, Kim SG, Nam SH, Jung ST. Determination of mineral and heavy metal contents of various salts. Korean J. Food Sci. Technol. 32: 1442-1445 (2000)
  121. Cosio MS, Ballabio D, Benedetti S, Gigliotti. Geographical origin and authentication of extra virgin olive oils by an electronic nose and in combination with artificial neural networks. Anal. Chim. Acta 567: 202-210 (2006) https://doi.org/10.1016/j.aca.2006.03.035
  122. Joebstl D, Bandoniene D, Meisel T, Chatzistathis S. Identification of the geographical origin of pumpkin seed oil by the use of rare earth elements and discriminant analysis. Food Chem. 123: 1303-1309 (2010) https://doi.org/10.1016/j.foodchem.2010.06.009
  123. Kang CH, Park JK, Park JW, Chun SS, Ha JW, Hwang YI. Comparative studies on the fatty acid composition of Korean and Chinese sesame oils and adulterated sesame oils with commercial edible oils. J. Korean Soc. Food Sci. Nutr. 31: 17-20 (2002) https://doi.org/10.3746/jkfn.2002.31.1.017
  124. Kim YS, Scotter C, Voyiagis M, Hall M. Potenrial of NIR spectroscopy for discriminating the geographical origin of sesame oil. Food Sci. Biotechnol. 7: 18-22 (1998)
  125. Shin JA, Lee KT. Discrimination of sesame oils from imported seeds and their blended ones using electronic-nose system. Korean J. Food Sci. Technol. 37: 856-860 (2005)
  126. Cho HJ, Hwang IS, Choi BH, Bae CH, Kim MH. Determination of residual pesticides in crude drugs-Gas chromatographic analysis of 18 pesticides. Korean J. Pharmacogn. 32: 200-211 (2001)
  127. Baby R, Cabezas M, Castro E, Filip R, Walsöe de Reca NE. Quality control of medicinal plant with an electronic nose. Sensor. Actuat. B-Chem. 106: 24-28 (2005) https://doi.org/10.1016/j.snb.2004.05.049
  128. Bang KH, Yu HS, Koo DH, Cho JH, Park HW, Park NS, Kim HS. Selection of RAPD marker to discriminate the bolting-resistant varieties and commercial dried medicinal materials of Angelica species. Korean J. Medicinal Crop. Sci. 10: 46-50 (2002)
  129. Noh BS, Youn AR, Lee NY. Application of mass spectrometerbased electronic nose for discrimination of Angelicae gigantis radix. Food Sci. Biotechnol. 14: 537-539 (2005)
  130. Kim JH, Kim EY, Jung KS, Rhyu MR. Discrimination of geographical origin for Ligusticum root (Ligusticum wallichii) by capillary electrophoresis. J. Korean Soc. Agric. Chem. Biotech. 46: 380-384 (2003)
  131. Kim NS. Development of techniques for origin discrimination and safety evaluation of the agricultural products and/or foods in the market. Final Report of Ministry of Agriculture and Forestry. GA 0403-0253, Seoul, Korea (2003)
  132. Cho YS, Han KY, Kim JH, Noh BS. Application of electronic nose to discrimination of the habitat for jujubes. J. Nat. Sci. Institute of Seoul Women's University 15: 143-149 (2003)
  133. Zhang L, Nie L. Discrimination of geographical origin and adulteration of Radix Astragali using Fourier transform infrared spectroscopy and chemometric methods. Phytochem. Anal. 21: 609-615 (2010) https://doi.org/10.1002/pca.1242
  134. Chesson LA, Valenzuela LO, O'Grady SP, Cerling TE, Ehleringer JR. Hydrogen and oxygen stable isotope ratios of milk in the United States. J. Agr. Food Chem. 58: 2358-2363 (2010) https://doi.org/10.1021/jf904151c
  135. Bontempo L, Larcher R, Camin F, Hölzl S, Rossmann A, Horn P, Nicolini G. Elemental and isotopic characterisation of typical Italian alpine cheeses. Int. Dairy J. 21: 441-446 (2011) https://doi.org/10.1016/j.idairyj.2011.01.009
  136. Akerstrom A, Jaakola L, Bang U, Jaderland A. Effects of latitude-related factors and geographical origin on anthocyanidin concentrations in fruits of Vaccinium myrtillus L. (bilberries). J. Agr. Food Chem. 58: 11939-11945 (2010) https://doi.org/10.1021/jf102407n
  137. Chun JU. Use of near-infrared spectroscopy for discriminating Korean and Chinese green tea products. J. Korean Tea Soc. 13: 97-110 (2007)
  138. Ye N, Zhang L, Gu X. Classification of Maojian teas from different geographical origins by micellar electrokinetic chromatography and pattern recognition techniques. Anal. Sci. 27: 765-769 (2011) https://doi.org/10.2116/analsci.27.765
  139. Choi SH, Im SI, Bae JE. Analysis of aroma components from flower tea of German chamomile and Chrysanthemum boreale Makino. Korean J. Food Cookery Sci. 22: 768-773 (2006)
  140. Sim CO, Ahmad MN, Ismali Z, Othman AR, Noor NAM, Zaihedee EM. Chemometric classification of herb-Orthosiphon stamineus according to its geographical origin using virtual chemical sensor based upon fast GC. Sensors 3: 458-471 (2003) https://doi.org/10.3390/s31000458
  141. Maggi L, Carmona M, Kelly SD, Marigheto N, Alonso GL. Geographical origin differentiation of saffron spice (Crocus sativus L. stigmas)-Preliminary investigation using chemical and multi-element (H, C, N) stable isotope analysis. Food Chem. 128: 543-548 (2011) https://doi.org/10.1016/j.foodchem.2011.03.063
  142. Seo HS, Kang HJ, Jung EH, Hwang IK. Application of GCSAW (surface acoustic wave) electronic nose to classification of origins and blended commercial brands in roasted ground coffee beans. Korean J. Food Cookery Sci. 22: 299-306 (2006)
  143. Rummel S, Hoelzl S, Horn P, Rossmann A, Schlicht C. The combination of stable isotope abundance ratios of H, C, N, and S with 87Sr/86Sr for geographical origin assignment of orange juices. Food Chem. 118: 890-900 (2010) https://doi.org/10.1016/j.foodchem.2008.05.115
  144. Commission Regulation (EEC) No 2348/91. Establishing an databank for the results of analysis of wine products by nuclear magnetic resonance of deuterium. Official Journal L 214: 0039-0043 (1991)
  145. Fabani MP, Arrua RC, Vazquez F, Diaz MP, Baroni MV, Wunderlin DA. Evaluation of elemental profile coupled to chemometrics to assess the geographical origin of Argentinean wines. Food Chem. 119: 372-379 (2010) https://doi.org/10.1016/j.foodchem.2009.05.085
  146. Saavedra J, Fuentealba C, Yáñez L, Bravo M, Quiroz W, Lukacsy G, Carot JM. Chemometric approaches for the zoning of Pinot Noir wines from the Casablanca valley, Chile. Food Chem. 127: 1842-1847 (2011) https://doi.org/10.1016/j.foodchem.2011.01.132
  147. Otteneder H, Marx R, Zimmer M. Analysis of the anthocyanin composition of Cabernet Sauvignon and Portugieser wines provides an objective assessment of the grape varieties. Aust. J. Grape Wine R. 10: 3-7 (2004)
  148. Jaitz L, Siegl K, Eder R, Rak G, Abranko L, Koellensperger G, Hann S. LC-MS/MS analysis of phenols for classification of red wine according to geographic origin, grape variety, and vintage. Food Chem. 122: 366-372 (2010) https://doi.org/10.1016/j.foodchem.2010.02.053
  149. Kim JY, Jang JS, Lee JW, Lee KT. Flavor pattern analysis of imported wines using electronic nose system. J. East Asian Soc. Dietary Life 18: 14-21 (2008)
  150. Groselj N, Veer GVD, Tusar M, Vracko M, Novic M. Verification of the geological origin of bottled mineral water using artificial neural networks. Food Chem. 118: 941-947 (2010) https://doi.org/10.1016/j.foodchem.2008.11.085
  151. Cynkar W, Dambergs R, Smith P, Cozzolino D. Classification of Tempranillo wines according to geographic origin: Combination of mass spectrometry based electronic nose and chemometrics. Anal. Chim. Acta 660: 227-231 (2010) https://doi.org/10.1016/j.aca.2009.09.030
  152. Gardner JW, Bartlett PN. A brief history of electronic nose. Sensor. Actuat. B-Chem. 18-19: 211-220 (1994)
  153. Schaller E, Bosset JO, Escher F. Electronic noses and their application to food. LWT Food Sci. Technol. 31: 305-316 (1998) https://doi.org/10.1006/fstl.1998.0376
  154. Gardner JW, Hines EL. Pattern analysis techniques. pp. 633-652. In: Handbook of Biosensors and Electronic Noses: Medicine, Food, and the Environment. Kress-Rogers E(ed). CRC Press Inc., Frankfurt, Germany (1997)
  155. Noh BS, Lee DS. New product development by using principal component analysis. Food Sci. Indus. 29: 2-12 (1996)
  156. Lin JCC, Nagy S, Klim M. Application of pattern recognition techniques to sensory and gas chromatographic flavor profiles of natural orange aroma. Food Chem. 47: 235-245 (1993) https://doi.org/10.1016/0308-8146(93)90155-9
  157. Dinatale C, Davide F, D'amico A, Sberveglieri G, Nelli P, Faglia G. Metal oxide semiconductor gas sensors array as a tool for the analysis of wine vapors. Curr. Status Future Trends. 1: 131-134 (1995)
  158. Tomlinson JB, Ormrod IH, Sharpe FR. Electronic aroma detection in the brewery. J. Am. Soc. Brew. Chem. 53: 167-173 (1995)
  159. Hanrieder D, Lauer F, Hirschfelder M. Investigations on peppermint oils using electronic noses. pp. 275-286. In: Electronic Noses and Sensor Array Based Systems. Hurst WJ (ed). Technomic Publishing Company Inc., Lancaster, PA, USA (1999)
  160. Kim JH, Lee CH. Application of neural network in food and bioindustry process. Food Sci. Indus. 33: 27-32 (2000)
  161. Lee SW. Hackseup haneun Kikae Sinkyungmang (Machine learning neural networks). Ohm Inc., Seoul, Korea. p. 236 (1995)
  162. Goodacre R, Kell DB, Dianchi G. Rapid assessment of the adulteration of virgin olive oils by other seed oils using pyrolysis mass spectrometry and artificial neural networks. J. Sci. Food Agr. 63: 297-307 (1993) https://doi.org/10.1002/jsfa.2740630306
  163. Hong HK, Shin HW, Park HS, Yun DH, Kwon CH, Lee KC, Kim ST, Morizumi T. Gas identification using micro gas sensor array and neutral-network pattern recognition. Sensor. Actuat. BChem. 33: 68-71 (1996) https://doi.org/10.1016/0925-4005(96)01892-8
  164. Llobet E, Hines EL, Gardner JW, Franco S. Non-destructive banana ripeness determination using a neural network-based electronic nose. Meas. Sci. Technol. 10: 538-548 (1999) https://doi.org/10.1088/0957-0233/10/6/320
  165. Moy L, Collins M. Electronic noses and artificial neural networks. Am. Lab. February: 22-32 (1996)
  166. Ni H, Gunasekaran S. Food quality prediction with neural networks. Food Technol.-Chicago 52: 60-65 (1998)
  167. Mielle P. Electronic nose: Towards the objective instrumental characterization of food aroma. Trends Food Sci. Tech. 7: 432- 438 (1996) https://doi.org/10.1016/S0924-2244(96)10045-5
  168. Noh BS, Ko JW. Discrimination of the habitat for agricultural products by using electronic nose. Food Eng. Prog. 1: 103-103 (1997)
  169. Noh BS, Ko JW, Kim SY. Use of conducting polymer sensor and metal oxide sensor of electronic nose on discrimination of the habitat for Ginseng. J. Nat. Sci. Institute of Seoul Women's University 9: 81-84 (1997)
  170. Noh BS, Ko JW, Kim SY, Kim SJ. Application of electronic nose in discrimination of the habitat for special agricultural products. Korean J. Food Sci. Technol. 30: 1051-1057 (1998)
  171. Cho YS, Han KY, Kim JH, Noh BS. Application of electronic nose in discrimination of the habitat for black rice. Korean J. Food Sci. Technol. 34: 136-139 (2002)
  172. Noh BS, Oh SY. Discrimination of the origin through pattern analysis of volatile components for domestic and imported Paeomia Albiflora using the electronic nose. J. Nat. Sci. Institute of Seoul Women's University 15: 143-149 (2003)
  173. Son HJ, Kang JH, Hong EJ, Lim CL, Choi JY, Noh BS. Authentication of sesame oil with addition of perilla oil using electronic nose based on mass spectrometry. Korean J. Food Sci. Technol. 41: 609-614 (2009)

피인용 문헌

  1. Electronic Nose Analysis of Ethanol in Gochujang for Halal Food Certification vol.48, pp.3, 2016, https://doi.org/10.9721/KJFST.2016.48.3.193
  2. Comparison of Mineral Contents and Antioxidant Activities of Domestic and Chinese Wolfiporia extensa for Origin Identification vol.14, pp.4, 2016, https://doi.org/10.14480/JM.2016.14.4.232
  3. Analysis of Geographical Origin of Red Ginseng Extract Using Mass Spectrometer-based Electronic Nose vol.45, pp.5, 2013, https://doi.org/10.9721/KJFST.2013.45.5.652
  4. Analysis of ethanol in soy sauce using electronic nose for halal food certification vol.26, pp.2, 2017, https://doi.org/10.1007/s10068-017-0042-1
  5. Discrimination of vegetable oils by stable carbon isotope ratio and fatty acid composition vol.27, pp.1, 2014, https://doi.org/10.5806/AST.2014.27.1.66
  6. Identification of the geographical origin of cheonggukjang by using fourier transform near-infrared spectroscopy and energy dispersive X-ray fluorescence spectrometry vol.48, pp.5, 2016, https://doi.org/10.9721/KJFST.2016.48.5.418
  7. The Correlation of Inorganic Anion Contents in Rice and Its Soils Based on Four Geographical Origin vol.7, pp.9, 2014, https://doi.org/10.1007/s12161-014-9816-8
  8. Pattern Recognition for Typification of Whiskies and Brandies in the Volatile Components using Gas Chromatographic Data vol.21, pp.5, 2016, https://doi.org/10.9708/jksci.2016.21.5.167
  9. Discrimination of the origin of commercial red ginseng concentrates using LC-MS/MS and electronic nose analysis based on a mass spectrometer vol.23, pp.5, 2014, https://doi.org/10.1007/s10068-014-0196-z