DOI QR코드

DOI QR Code

Development of a Moving Platform for a Upright Running Mobile Robot Based on an Inverted Pendulum Mechanism

역진자 기구에 기반한 직립주행 가능 이동로봇용 구동 플랫폼 개발

  • Received : 2012.05.01
  • Accepted : 2012.10.08
  • Published : 2012.10.25

Abstract

In this research a moving platform for a mobile robot which can run with upright posture is proposed. It is able to stand with standing arms and run uprightly based on an inverted pendulum mechanism. Conventional mobile robots generally may equip 4 wheels or 3 wheels including a caster and have good statistic stability. They need a steering mechanism to choose which way to go since they have a square or rectangular configuration with multiple wheels. When a mobile robot meets a sharply perpendicular and narrow crossroad, it may need a special steering scheme such as going forward and backward repeatedly or it sometimes cannot even pass through the crossroad because of its size. The proposed moving platform for a mobile robot changes to a upright posture which has a small planar area and is able to pass through the crossroad. We propose a moving platform for a mobile robot with a inverted pendulum mechanism and standing arms which can make the mobile robot upright.

본 논문에서는 역진자 기구와 기립 암을 이용하여 직립주행이 가능한 이동로봇용 구동 플랫폼을 개발한다. 기존에 주류를 이루고 있는 이동로봇은 4륜 혹은 3륜으로 구동되고 있으므로 그 몸체는 정역학적으로 용이하게 안정성이 확보되는 특징을 갖고 있다. 기존의 이동로봇의 형태는 평면적으로 넓적한 형태의 정사각형 혹은 직사각형 형태를 갖고 있으므로 몸체의 조향을 위해서 독립구동륜형 혹은 조향형 차륜을 장치하고 있다. 이동로봇은 협소한 지형에서 90도로 굽은 통로를 주행할 때, 전후진을 반복하는 등 특별한 조향기법을 필요로 하거나 몸체의 평면적 때문에 물리적으로 조향이 불가능한 경우에 처하게 된다. 이 때, 이동로봇은 평면적이 작은 방향 즉, 직립된 상태로 몸체의 형상을 변형시켜 해당 지형을 주행함으로써 주행곤란 문제를 회피할 수 있다. 본 연구에서는 이동로봇의 몸체를 직립시킬 수 있는 기립 암과 역진자 기구가 결합된 구동 플랫폼을 제안한다.

Keywords

References

  1. J. Huang, Z-H. Guan, T. Matsuno, T. Fukuda, and K. Sekiyama, "Sliding-Mode Velocity Control of Mobile-Wheeled Inverted-Pendulum Systems," IEEE Transactions on Robotics, vol. 26, no. 4, Aug. pp. 750-758, 2010. https://doi.org/10.1109/TRO.2010.2053732
  2. Se-Han Lee, Sang-Yong Rhee, "A Mixed $H_{2}/H_{\infty}$ State Feedback Controller Based on LMI Scheme for a Wheeled Inverted Pendulum running on the Inclined Road," Journal of Korea Institute of Intelligent Systems, vol. 20, no. 5, pp. 617-623, 2010. https://doi.org/10.5391/JKIIS.2010.20.5.617
  3. http://www.segway.com/aboutus/press_releases/pr_120301.html.
  4. http://www.toyota.co.jp/jp/news/08/Aug/nt08_0805.html.
  5. http://world.honda.com/news/2009/c090924New-Personal-Mobility-Device/
  6. J. Searock, B. Browning, and M. Veloso, "Turning Segways into Soccer Robots," Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 1029-1034, 2004.
  7. R. O. Ambrose, R. T. Savely, S. M. Goza, P. Strawser, M. A. Dftler, I. and Spain, N. Radford, "Mobile Manipulation using NASA's Rbonaut," Proceedings of IEEE International Conference on Robotics & Automation, New Orleans, US, pp. 2104-2109, 2004.
  8. The Robotics Society of Japan, Robotics Hand Book, in Japanese, Coronasha, pp. 375, 2005.
  9. D. H. Myszka, Machines and Mechanisms: Applied Kinematic Analysis 3rd Ed., Prentice Hall, pp. 89, 2004.

Cited by

  1. A Development of the Self-Standable Mobile Robot Based on a Wheeled Inverted Pendulum Mechanism vol.30, pp.2, 2013, https://doi.org/10.7736/KSPE.2013.30.2.171
  2. A Wheeled Inverted Pendulum System with an Automatic Standing Arm vol.25, pp.6, 2015, https://doi.org/10.5391/JKIIS.2015.25.6.578
  3. Robust Control Design for a Two-Wheeled Inverted Pendulum Mobile Robot vol.26, pp.1, 2016, https://doi.org/10.5391/JKIIS.2016.26.1.016