Microcrustacean Community Dynamics in Upo Wetlands: Impact of Rainfall and Physiochemical Factor on Microcrustacean Community

우포늪의 미소갑각류 군집 동태: 강우량 및 이화학적 요인이 미소갑각류 군집 분포에 미치는 영향

  • Choi, Jong-Yun (Department of Biological Sciences, Pusan National University) ;
  • Kim, Seong-Ki (Department of Biological Sciences, Pusan National University) ;
  • La, Geung-Hwan (Department of Environmental Education, Sunchon National University) ;
  • Jeong, Kwang-Seuk (Department of Biological Sciences, Pusan National University) ;
  • Kim, Hyun-Woo (Department of Environmental Education, Sunchon National University) ;
  • Kim, Tae-Kyu (National Institute of Environmental Research) ;
  • Joo, Gea-Jae (Department of Biological Sciences, Pusan National University)
  • Received : 2012.05.18
  • Accepted : 2012.08.18
  • Published : 2012.09.30

Abstract

The relationships between environmental factors and the dynamics of the microcrustacean community, including planktonic or epiphytic cladocerans and copepods, were studied at Upo Wetlands from 2001 to 2010. Among 10 identified cladoceran taxon, epiphytic cladocerans (Alona, Camptocercus, Simocephalus, Diaphanosoma, Sida) and planktonic cladocerans (Bosmina, Ceriodaphnia, Daphnia, Moina, Scapholeberis) showed distinctive patterns in appearance throughout the year. Overall, epiphytic cladocerans were more abundant during the aquatic plant development season (May to Nov.), planktonic cladocerans were similarly distributed throughout the seasons, but showed a lower density than epiphytic cladocerans. The seasonal changes in copepods abundance showed a similar seasonal pattern when compared to epiphytic cladocerans. Planktonic cladocerans showed no significant relationship to rainfall and physico-chemical factors, while epiphytic cladocerans exhibited a distinct relationship with rainfall and water temperature (n=120, p<0.01), and a negative relationship with pH and conductivity (n=120, p<0.05). Among the epiphytic cladocerans, the Alona and Diaphanosoma showed a distinctive correlation with environmental factors, and their density was affected by rainfall and water temperature (n=120, p<0.01). Copepods had a positive relationship with rainfall (n=120, p<0.01) and water temperature (n=120, p<0.05). In conclusion, changes in rainfall and water temperature can affect the seasonal changes of microcrustacean community and abundance in Upo Wetlands.

미소갑각류 군집과 이화학적 요인 간의 관계를 파악하기 위해 우포늪에서 2001년부터 2010년 동안 2주 간격으로 조사를 수행하였다. 조사 시간 동안, 총 10속의 지각류가 동정되었으며, 서식 형태에 따라 구분된 부착성 지각류(Alona, Camptocercus, Simocephalus, Diaphanosoma, Sida)와 부유성 지각류(Bosmina, Ceriodaphnia, Daphnia, Moina, Scapholeberis)의 연 출현이 매우 상이한 것으로 나타났다. 부유성 지각류는 봄과 가을 시기에 높은 밀도로 나타났으며, 부착성 지각류는 여름 시기에 상대적으로 높은 밀도를 보였다. 요각류 성체와 유생 또한 부착성 지각류와 유사한 계절적 분포 경향을 나타내었다. 부유성 지각류는 강우량과 이화학적 요인과 상관성을 보이지 않았으나, 부착성 지각류는 이화학적 요인 중 수온과 뚜렷한 상관성을 보였다(n=120, p<0.01). 특히 부착성 지각류 중 Chydoridae는 강우량 및 수온과 양의 상관관계를(n=120, p<0.01), 용존산소와 전기전도도와는 음의 상관관계를 나타냈다(n=120, p<0.05). 요각류 군집은 강우량(n=120, p<0.01) 및 수온(n=120, p<0.05)과 양의 상관관계를 나타내었다. 결론적으로 우포에서 강우량은 미소갑각류 군집 분포를 결정하는 매우 중요한 요인인 것으로 파악되었다.

Keywords

References

  1. Angeler, D.G., M. Alvarez-Cobelas, S. Sanchez-Carrillo and M.A. Rodrigo. 2002. Assessment of exotic fish impacts on water quality and zooplankton in a degraded semiarid floodplain wetland. Aquatic Sciences 64: 76-86. https://doi.org/10.1007/s00027-002-8056-y
  2. Arcifa, M.S., T.G. Northcote and O. Froehlich. 1986. Fishzooplankton interactions and their effects on water quality of a tropical Brazilian reservoir. Hydrobiologia 139: 49-58. https://doi.org/10.1007/BF00770241
  3. Balcer, M.D., N.L. Korda and S.I. Dodson. 1984. Zooplankton of the Great Lakes: A guide to the identification and ecology of the common crustacean species. University of Wisconsin Press, Wisconsin.
  4. Beaver, J.R., A.M. Miller-Lemke and J.K. Acton. 1998. Midsummer zooplankton assemblages in four types of wetlands in the Upper Midwest, USA. Hydrobiologia 380: 209-220. https://doi.org/10.1023/A:1003452118351
  5. Beklioglu, M., A.G. Gozen, F. Yildirim, P. Zorlu and S. Onde. 2008. Impact of food concentration on diel vertical migration behaviour of Daphnia pulex under fish predation risk. Hydrobiologia 614: 321-327. https://doi.org/10.1007/s10750-008-9516-8
  6. Bertrand, M., G. Cabana, D.J. Marcogliese and P. Magnan. 2011. Estimating the feeding range of a mobile consumer in a river-flood plain system using delta (13)C gradients and parasites. Journal of Animal Ecology 80: 1313-1323. https://doi.org/10.1111/j.1365-2656.2011.01861.x
  7. Brinson, M.M. 1993. Changes in the functioning of wetlands along environmental gradients. Wetlands 13: 65-74. https://doi.org/10.1007/BF03160866
  8. Burks, R.L., E. Jeppesen and D.M. Lodge. 2001. Littoral zone structures as Daphnia refugia against fish predators. Limnology and Oceanography 46: 230-237. https://doi.org/10.4319/lo.2001.46.2.0230
  9. Buskey, E.J., P.H. Lenz and D.K. Hartline. 2011. Sensory perception, neurobiology and behavioral adaptations for predator avoidance in planktonic copepods. Adaptive Behavior 20: 3-9.
  10. Campbell, C.E. 2002. Rainfall events and downstream drift of microcrustacean zooplankton in a Newfoundland boreal stream. Canadian Journal of Zoology-Revue Canadienne De Zoologie 80: 997-1003. https://doi.org/10.1139/z02-077
  11. Cattaneo, A., G. Galanti, S. Gentinetta and S. Romo. 1998. Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshwater Biology 39: 725-740. https://doi.org/10.1046/j.1365-2427.1998.00325.x
  12. De Eyto, E. and K. Irvine. 2001. The response of three Chydorid species to temperature, pH and food. Hydrobiologia 459: 165-172. https://doi.org/10.1023/A:1012585217667
  13. Denny, P. 1994. Biodiversity and wetlands. Wetlands Ecology and Management 3: 55-61.
  14. Depaggi, S.J. 1981. Temprorary variations and horizontal distribution of the zooplankton of some secondary rivers of the middle Parana river. Studies on Neotropical Fauna and Environment 16: 185-199. https://doi.org/10.1080/01650528109360593
  15. Diehl, S. 1992. Fish predation and benthic community structure: the role of omnivory and habitat complexity. Ecology 73: 1646-1661. https://doi.org/10.2307/1940017
  16. Dini, M.L. and S.R. Carpenter. 1992. Fish predators, food availability and diel vertical migration in Daphnia. Journal of Plankton Research 14: 359-377. https://doi.org/10.1093/plankt/14.3.359
  17. Gillooly, J.F. 2000. Effect of body size and temperature on generation time in zooplankton. Journal of Plankton Research 22: 241-251. https://doi.org/10.1093/plankt/22.2.241
  18. Goulden, C. 1971. Environmental control of the abundance and distribution of the Chydorid Cladocera. Limnology and Oceanography 16: 331-333.
  19. Havel, J.E., K.A. Medley, K.D. Dickerson, T.R. Angradi, D.W. Bolgrien, P.A. Bukaveckas and T.M. Jicha. 2009. Effect of main-stem dams on zooplankton communities of the Missouri River (USA). Hydrobiologia 628: 121-135. https://doi.org/10.1007/s10750-009-9750-8
  20. Horppila, J., J. Ruuhijarvi, M. Rask, C. Karppinen, K. Nyberg and M. Olin. 2000. Seasonal changes in the diets and relative abundances of perch and roach in the littoral and pelagic zones of a large lake. Journal of Fish Biology 56: 51-72. https://doi.org/10.1111/j.1095-8649.2000.tb02086.x
  21. Jeong, K.S., D.K. Kim and G.J. Joo. 2007. Delayed influence of dam storage and discharge on the determination of seasonal proliferations of Microcystis aeruginosa and Stephanodiscus hantzschii in a regulated river system of the lower Nakdong River (South Korea). Water Research 41: 1269-1279. https://doi.org/10.1016/j.watres.2006.11.054
  22. Kim, D.K., H.W. Kim, G.Y. Kim, Y.S. Kim, M.C. Kim, K.S. Jeong and G.J. Joo. 2005. Prolonged turbidity of the lower Nakdong River in 2003. Korea Journal of Limnology 38: 44-53.
  23. Korovchinsky, N. 1981. Taxonomic and faunistic revision of Australian Diaphanosoma (Cladocera: Sididae). Marine and Freshwater Research 32: 813-831. https://doi.org/10.1071/MF9810813
  24. Maruyama, A., Y. Yamada, M. Yuma and B. Rusuwa. 2001. Stable nitrogen and carbon isotope ratios as migration tracers of a landlocked goby, Rhinogobius sp (the orange form), in the Lake Biwa water system. Ecological Research 16: 697-703. https://doi.org/10.1046/j.1440-1703.2001.00427.x
  25. Mizuno, T. and E. Takahashi. 1999. An illustrated guide to freshwater zooplankton in japan. Tokai University Press.
  26. Nicolle, A., L.A. Hansson and C. Bronmark. 2010. Habitat structure and juvenile fish ontogeny shape zooplankton spring dynamics. Hydrobiologia 652: 119-125. https://doi.org/10.1007/s10750-010-0323-7
  27. Nurminen, L., J. Horppila and Z. Pekcan-hekim. 2007. Effect of light and predator abundance on the habitat choice of plant-attached zooplankton. Freshwater Biology 52: 539-548. https://doi.org/10.1111/j.1365-2427.2007.01724.x
  28. Redfield, G.W. 1980. The effect of zooplankton on phytoplankton on phytoplankton productivity in the epilimnion of a subalpone lake. Hydrobiologia 70: 217-224. https://doi.org/10.1007/BF00016763
  29. Sagrario, M.D.G. and E. Balseiro. 2010. The role of macroinvertebrates and fish in regulating the provision by macrophytes of refugia for zooplankton in a warm temperate shallow lake. Freshwater Biology 55: 2153-2166. https://doi.org/10.1111/j.1365-2427.2010.02475.x
  30. Sakuma, M., T. Hanazato, A. Saji and R. Nakazato. 2004. Migration from plant to plant: an important factor controlling densities of the epiphytic cladoceran Alona (Chydoridae, Anomopoda) on lake vegetation. Limnology 5: 17-23. https://doi.org/10.1007/s10201-003-0110-5
  31. Ueda, H., A. Terao, M. Tanaka, M. Hibino and M.S. Islam. 2004. How can river-estuarine planktonic copepods survive river floods? Ecological Research 19: 625-632. https://doi.org/10.1111/j.1440-1703.2004.00677.x
  32. Vandekerkhove, J., S. Declerck, L. Brendonck, J.M. Conde-Porcuna, E. Jeppesen and L. De Meester. 2005. Hatching of cladoceran resting eggs: temperature and photoperiod. Freshwater Biology 50: 96-104. https://doi.org/10.1111/j.1365-2427.2004.01312.x