DOI QR코드

DOI QR Code

Genetic structure of Larimichthys polyactis (Pisces: Sciaenidae) in the Yellow and East China Seas inferred from microsatellite and mitochondrial DNA analyses

  • Kim, Jin-Koo (Department of Marine Biology, Pukyong National University) ;
  • Min, Gi-Sik (Department of Biological Sciences, Inha University) ;
  • Yoon, Moon-Geun (Yangyang salmon station, Korea Fisheries Resources Agency) ;
  • Kim, Yeong-Hye (National Fisheries Research and Development Institute) ;
  • Choi, Jung-Hwa (National Fisheries Research and Development Institute) ;
  • Oh, Taeg-Yun (National Fisheries Research and Development Institute) ;
  • Ni, Yong (East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences)
  • Received : 2011.08.05
  • Accepted : 2012.12.20
  • Published : 2012.08.31

Abstract

Genetic variation was surveyed at four microsatellite loci and 1416 base pairs (bp) of the mitochondrial DNA (mtDNA) cytochrome c oxidase I gene (COI) to clarify the genetic structure of the small yellow croaker, Larimichthys polyactis, in the Yellow and East China Seas, especially regarding four provisional populations, (one Korean and three Chinese populations). Based on microsatellite DNA variations, the estimated expected heterozygosity ($H_E$) in each population ranged from 0.776 to 0.947. The microsatellite pairwise $F_{ST}$ estimates showed no significant genetic differentiation between the populations. MtDNA variations also indicated no genetic structure in L. polyactis, but very high variability. The absence of genetic differentiation among and within populations of L. polyactis may either result from the random migration of the adult or the passive dispersal of the eggs and larvae.

Keywords

References

  1. Aguilar A, John CG. 2006. A comparison of variability and population structure for major histocompatibility complex and microsatellite loci in California coastal steelhead (Oncorhynchus mykiss Walbaum). Mol Ecol. 15:923-937. https://doi.org/10.1111/j.1365-294X.2006.02843.x
  2. Avise JC. 2000. Phylogeography: the history and formation of species. Cambridge: Harvard University Press. p. 1-447.
  3. Baik CI, Lee CI, Choi KH, Kim DS. 2005. Variation of fisheries conditions of fishing ground of yellow croaker (Pseudosciaena polyactis Bleeker) in the East China Sea and the Yellow Sea. J Kor Fish Soc. 38:413-424.
  4. Bensch S, Akesson M. 2005. Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol. 14:2899-2914. https://doi.org/10.1111/j.1365-294X.2005.02655.x
  5. Brown WM, George M Jr, Wilson AC. 1979. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA. 76:1967-1971. https://doi.org/10.1073/pnas.76.4.1967
  6. Chung SC. 1970. Age and growth of the yellow croaker, Pseudosciaena manchurica Jordan et Thompson, in the western coastal waters of Korea. Bull Kor Fish Soc. 3:154-160.
  7. Cowen RK, Lwiza KM, Sponaugle S, Paris CB, Olson DB. 2000. Science. 287:857-859. https://doi.org/10.1126/science.287.5454.857
  8. Cowen RK, Paris CB, Olson DB, Fortuna JL. 2003. The role of long distance dispersal in replenishing marine populations. Gulf and Caribbean Res. 14:129-137.
  9. Dunham RA. 2004. Aquaculture and fisheries biotechnology. Wallingford: CABI Publishing Press. p. 85-103.
  10. Estoup A, Rousset F, Michalakis Y, Cornuet JM, Adriamanga M, Guyomard R. 1998. Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta). Mol Ecol. 7:339-353. https://doi.org/10.1046/j.1365-294X.1998.00362.x
  11. Excoffier L, Laval G, Schneider S. 2005. Arlequin ver 3.1: an integrated software package for population genetics data analysis. Evol Bioinform Online. 1:47-50.
  12. Felsenstein J. 1993. PHYLIP (Phylogeny Interference Package) version 3.5c. Department of Genetics, Washington State University, Seattle.
  13. Goudet J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2. 9. 3).
  14. Han ZQ, Lin LS, Shui BN, Gao TX. 2009. Genetic diversity of small yellow croaker Larimichthys polyactis revealed by AFLP markers. African J Agri Res. 4:605-610.
  15. Hedrick PW. 1999. Perspective: highly variable loci and their interpretation in evolution and conservation. Evolution. 53:313-318. https://doi.org/10.1111/j.1558-5646.1999.tb03767.x
  16. Hwang GL, Lee YC, Chang CS, Hue HK. 1994. Mitochondrial DNA analysis of the small yellow croaker (Pseudosciaena polyactis Bleeker) in the Yellow Sea. Bull Kor Fish Soc. 27:613-619.
  17. Ikeda I. 1964. Studies on the fishery biology of the yellow croaker in the East China and Yellow Seas. Bull Seikai Reg Fish Res Lab. 31:49-81.
  18. Kalinowski ST, Taper ML, Marshall TC. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol. 16:1099-1006. https://doi.org/10.1111/j.1365-294X.2007.03089.x
  19. Kim JK, Kim YH, Kim MJ, Park JY. 2010. Genetic diversity, relationships and demographic history of the small yellow croaker, Larimichthys polyactis (Pisces: Sciaenidae) from Korea and China inferred from mitochondrial control region sequence data. Anim Cells Syst. 14:1-7. https://doi.org/10.1080/19768351003765145
  20. Kim YH, Lee SK, Lee JB, Lee DW, Kim YS. 2006. Age and growth of small yellow croaker, Larimichthys polyactis in the south sea of Korea. Kor J Ichthyol. 18:45-54.
  21. Kumar S, Tamura K, Nei M. 1993. Guidelines for choosing distance measures. MEGA: Molecular Evolutionary Genetics Analysis. Version 1.01. University Park, Pennsylvania. p. 27-29.
  22. Lee MW, Zhang CI, Lee JU. 2000. Age determination and estimation of growth parameters using otoliths of small yellow croaker, Pseudosciaena polyactis Bleeker in Korean waters. Bull Kor Soc Fish Tech. 36:222-233.
  23. Lessios HA, Kessing BD, Pearse JS. 2001. Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema. Evolution. 55:955-975. https://doi.org/10.1554/0014-3820(2001)055[0955:PSASIT]2.0.CO;2
  24. Lessios HA, Kane J, Robertson DR. 2003. Phylogeography of the pantropical sea urchin Tripneustes: contrasting patterns of population structure between oceans. Evolution. 57:2026-2036. https://doi.org/10.1111/j.0014-3820.2003.tb00382.x
  25. Li J, Feng F, Yue GH. 2006. Twelve novel polymorphic microsatellites in a marine fish species, yellow croaker Larimichthys polyactis. Mol Ecol Note. 6:188-190. https://doi.org/10.1111/j.1471-8286.2005.01188.x
  26. Nei M. 1972. Genetic distances between populations. Amer Nat. 106:283-292. https://doi.org/10.1086/282771
  27. NFRDI (National Fisheries Research and Development Institute). 2005. Ecology and fishing grounds. Busan: Ye-mun-Sa. p. 1-397.
  28. Oosterhout CV, Hutchinson WF, Derek P, Wills M, Shipley P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 4:535-538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
  29. Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics. 155:945-959.
  30. Rice W. 1989. Analyzing tables of statistical tests. Evolution. 43:223-225. https://doi.org/10.1111/j.1558-5646.1989.tb04220.x
  31. Ross KG, Shoemaker DD, Krieger MJB, DeHeer CJ, Keller L. 1999. Assessing genetic structure with multiple classes of molecular markers: a case study involving the introduced fire ant (Solenopsis invicta). Mol Biol Evol. 16:525-543. https://doi.org/10.1093/oxfordjournals.molbev.a026134
  32. Rousset F, Raymond M. 1995. Testing heterozygote excess and deficiency. Genetics. 140:1413-1419.
  33. Saito T, Washio S, Dairiki K, Shimojo M, Itoi S, Sugita H. 2008. High gene flow in Girella punctata (Perciformes, Kyphosidae) among the Japanese Islands inferred from partial sequence of the control region in mitochondrial DNA. J Fish Biol. 73:1937-1945. https://doi.org/10.1111/j.1095-8649.2008.01997.x
  34. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning. A laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press.
  35. Sekino M, Hara M. 2001. Application of microsatellite markers to population genetics studies of Japanese flounder Paralichthys olivaceus. Mar Biotech. 3:572-589. https://doi.org/10.1007/s10126-001-0064-8
  36. Selkoe KA, Toonen RJ. 2006. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett. 9:615-629. https://doi.org/10.1111/j.1461-0248.2006.00889.x
  37. Slatkin M. 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 139:462-475.
  38. Sonstebo JH, Borgstrøm R, Heun M. 2007. A comparison of AFLPs and microsatellites to identify the population structure of brown trout (Salmo trutta L.) populations from Hardangervidda, Norway. Mol Ecol. 16:1427-1438. https://doi.org/10.1111/j.1365-294X.2007.03256.x
  39. Waples RS. 1998. Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Heredity. 89:438-450. https://doi.org/10.1093/jhered/89.5.438
  40. Waters JM, Roy MS. 2004. Phylogeography of a high dispersal New Zealand sea-star: does upwelling block gene-flow? Mol Ecol. 13:2797-2806. https://doi.org/10.1111/j.1365-294X.2004.02282.x
  41. Xiao Y, Zhang Y, Gao T, Yanagimoto T, Yabe M, Sakurai Y. 2009. Genetic diversity in the mtDNA control region and population structure in the small yellow croaker Larimichthys polyactis. Environ Biol Fishes. 85:303-314. https://doi.org/10.1007/s10641-009-9497-0
  42. Yamada U, Tokimura M, Horikawa H, Nakabo T. 2007. Fishes and fisheries of the East China and Yellow Seas. Kanagawa: Tokai University Press. p. 808-815.
  43. Zhang CI, Kim YM, Yoo SJ, Kim CK, Ahn SM. 1992a. A study on fluctuations in biomass of small yellow croaker, Pseudosciaena polyactis, off Korea. Bull Kor Fish Soc. 25:37-44.
  44. Zhang CI, Kim YM, Yoo SJ, Park CS, Kim SA, Kim CK, Yoon SB. 1992b. Estimation of population ecological characteristics of small yellow croaker, Pseudosciaena polyactis, off Korea. Bull Kor Fish Soc. 25:29-36.

Cited by

  1. Development and preliminary evaluation of a genomewide single nucleotide polymorphisms resource generated by RAD‐seq for the small yellow croaker (Larimichthys polyactis) vol.16, pp.3, 2012, https://doi.org/10.1111/1755-0998.12476
  2. RAD genotyping reveals fine-scale population structure and provides evidence for adaptive divergence in a commercially important fish from the northwestern Pacific Ocean vol.7, pp.None, 2019, https://doi.org/10.7717/peerj.7242
  3. Karyotypic Analysis of Chicken Grunt, Parapristipoma trilimeatum, Small Yellow Croaker, Larimichthys polyactis, and Brown Croaker, Miichthys miiuy vol.23, pp.1, 2012, https://doi.org/10.12717/dr.2019.23.1.073
  4. 전라남도 칠산도 주변 참조기(Larimichthys polyactis) 어란 출현의 첫 보고 vol.53, pp.4, 2012, https://doi.org/10.5657/kfas.2020.0650
  5. A first genetic linage map construction and QTL mapping for growth traits in Larimichthys polyactis vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-68592-0
  6. Identification of a large dataset of SNPs in Larimichthys polyactis using high‐throughput 2b‐RAD sequencing vol.51, pp.6, 2012, https://doi.org/10.1111/age.13000