조영 증강 자기공명정맥 촬영술에서의 동맥과 정맥 triggering 방법의 비교

Contrast Enhanced Cerebral MR Venography: Comparison between Arterial and Venous Triggering Methods

  • 장민지 (가톨릭대학교 의과대학 서울성모병원 영상의학과) ;
  • 최현석 (가톨릭대학교 의과대학 서울성모병원 영상의학과) ;
  • 정소령 (가톨릭대학교 의과대학 서울성모병원 영상의학과) ;
  • 안국진 (가톨릭대학교 의과대학 서울성모병원 영상의학과) ;
  • 김범수 (가톨릭대학교 의과대학 서울성모병원 영상의학과)
  • Jang, Min-Ji (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Choi, Hyun-Seok (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Jung, So-Lyung (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Ahn, Kook-Jin (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Kim, Bum-Soo (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
  • 투고 : 2012.06.26
  • 심사 : 2012.08.13
  • 발행 : 2012.08.31

초록

목적: 뇌내 정맥혈관을 평가하기 위한 조영 증강 자기공명 정맥촬영술의 arterial trigger 와 venous trigger 방법으로 시행한 영상의 차이점을 비교 분석하고자 한다. 대상과 방법: 건강검진을 목적으로 자기공명정맥촬영술을 시행한 41명의 환자들을 대상으로 해면부위의 내경 동맥에서 arterial triggering하여 6초 후에 얻은 영상 (n = 20) 과 상시상 정맥동에서 venous triggering (n = 21) 방법으로 시행한 영상을 후향적으로 분석하였다. 영상은 가돌리늄 조영제 ($Magnevist^{(R)}$, Schering, Germany)를 0.1 mmol/kg 정맥주입하여 시행하였고, 두개강 전반에 대하여 시상영상을 fast spoiled gradiend echo sequence로 시행하였다 (TR/TE 5.2/1.5, matrix $310{\times}310$, 절편수 124 절편, 두께 15 cm). 두 그룹의 영상을 해부학적 정맥 혈관 구조에 따라 17 정맥구역에 대하여 평가하였고, 정맥의 영상품질은 세 단계 (안보임, 일부 보임, 완전히 보임)로 나눠서 평가하였다. 결과: 정맥이 완전히 보인 구역은 arterial triggering 자기공명 정맥 촬영술에서 84% (272/323), venous triggering 자기 공명 정맥촬영술에서 91% (310/340) 이다. Venous triggering 자기공명촬영술과 arterial 자기 공명 정맥촬영술을 비교하였을 때 뇌내 정맥 구조를 평가하는데 있어 venous triggering 방법이 통계적으로 유의하게 높았다 (Fisher exact test, p<0.006). 결론: 조영 증강 자기공명 정맥 촬영술은 정맥 혈관 구조에 대한 고화질의 이미지를 제공하였고 arterial triggering 방법보다 venous triggering 방법이 뇌내 정맥 구조 평가에 우월한 것으로 나타났다.

Purpose : To compare the arterial and venous detection sites of triggering methods in contrast-enhanced-MR-venography (CE-MRV) for the evaluation of intracranial venous system. Materials and Methods: 41 healthy patients underwent CE-MRV with autotriggering at either the cavernous segment of internal carotid artery with an inserted time-delay of 6 seconds (n = 20) or the superior sagittal sinus without any timedelay (n = 21). 0.1 mmol/kg gadolinium-based contrast material ($Magnevist^{(R)}$, Schering, Germany) was intravenously injected by hand injection. A sagittal fast-spoiled-gradient-echo-sequence ranging from one ear to the other was performed (TR/TE5.2/1.5, Matrix $310{\times}310$, 124 sections in the 15-cm-thick volume). 17 predefined venous structures were evaluated on all venograms by two neuroradiologists and defined as completely visible, partially visible, or none visible. Results: The rate of completely visible structures were 272 out of 323 (84%) in the arterial triggering CE-MRV and 310 out of 340 (91%) in the venous triggering CE-MRV. The venous triggering CE-MRV demonstrated an overall superior visualization of the cerebral veins than the arterial triggering CE-MRV (Fisher exact test, p < 0.006). Conclusion: CE-MRV using venous autotriggering method provides higher-quality images of the intracranial venous structures compared to that of arterial.

키워드

참고문헌

  1. Farb RI. The dural venous sinuses: normal intraluminal architecture defined on contrast-enhanced MR venography. Neuroradiology 2007;49:727-732
  2. Farb RI, Scott JN, Willinsky RA, Montanera WJ, Wright GA, terBrugge KG. Intracranial venous system: gadoliniumenhanced three-dimensional MR venography with autotriggered elliptic centric-ordered sequence--initial experience. Radiology 2003;226:203-209
  3. Kirchhof K, Welzel T, Jansen O, Sartor K. More reliable noninvasive visualization of the cerebral veins and dural sinuses: comparison of three MR angiographic techniques. Radiology 2002;224:804-810
  4. Liang L, Korogi Y, Sugahara T, et al. Evaluation of the intracranial dural sinuses with a 3D contrast-enhanced MP-RAGE sequence: prospective comparison with 2D-tof MR venography and digital subtraction angiography. AJNR Am J Neuroradiol 2001;22:481-492
  5. Lovblad KO, Schneider J, Bassetti C, et al. Fast contrastenhanced MR whole-brain venography. Neuroradiology 2002;44:681-688
  6. Meckel S, Glucker TM, Kretzschmar M, Scheffler K, Radu EW, Wetzel SG. Display of dural sinuses with time-resolved, contrast-enhanced three-dimensional MR venography. Cerebrovasc Dis 2008;25:217-224
  7. Mermuys KP, Vanhoenacker PK, Chappel P, Van Hoe L. Threedimensional venography of the brain with a volumetric interpolated sequence. Radiology 2005;234:901-908
  8. Rollins N, Ison C, Reyes T, Chia J. Cerebral MR venography in children: comparison of 2D time-of-flight and gadoliniumenhanced 3D gradient-echo techniques. Radiology 2005;235: 1011-1017
  9. Wetzel SG, Law M, Lee VS, Cha S, Johnson G, Nelson K. Imaging of the intracranial venous system with a contrastenhanced volumetric interpolated examination. Eur Radiol 2003;13:1010-1018
  10. Klingebiel R, Bauknecht HC, Bohner G, Kirsch R, Berger J, Masuhr F. Comparative evaluation of 2D time-of-flight and 3D elliptic centric contrast-enhanced MR venography in patients with presumptive cerebral venous and sinus thrombosis. Eur J Neurol 2007;14:139-143
  11. Leach JL, Wolujewicz M, Strub WM. Partially recanalized chronic dural sinus thrombosis: findings on MR imaging, timeof- flight MR venography, and contrast-enhanced MR venography. AJNR Am J Neuroradiol 2007;28:782-789
  12. Bozzao A, Finocchi V, Romano A, et al. Role of contrastenhanced MR venography in the preoperative evaluation of parasagittal meningiomas. Eur Radiol 2005;15:1790-1796
  13. Mattle HP, Wentz KU, Edelman RR, et al. Cerebral venography with MR. Radiology 1991;178:453-458
  14. Kanal E, Shellock FG, Talagala L. Safety considerations in MR imaging. Radiology 1990;176:593-606
  15. Talagala SL, Jungreis CA, Kanal E, et al. Fast three-dimensional time-of-flight MR angiography of the intra-cranial vasculature. J Magn Reson Imaging 1995;5:317-323
  16. Liauw L, van Buchem MA, Spilt A, et al. MR angiography of the intracranial venous system. Radiology 2000;214:678-682
  17. Farb RI, Scott JN, Willinsky RA, Montanera WJ, Wright GA, terBrugge KG. Intracranial venous system: gadoliniumenhanced three-dimensional MR venography with autotriggered elliptic centric-ordered sequence-initial experience. Radiology 2003;226:203-209
  18. Fu JH, Lai PH, Hsiao CC, et al. Comparison of real-time threedimensional gadolinium-enhanced elliptic centric-ordered MR venography and two-dimensional time-of-flight MR venography of the intracranialvenous system. J Chin Med Assoc 2010;73:131-138
  19. Marcello M, Vincenzo BM, Orlando DD, et al. Multiple sclerosis: cerebral circulation time. Radiology 2012;262:947-955