DOI QR코드

DOI QR Code

Discovery and Evaluation of Polymorphisms in the AKT2 and AKT3 Promoter Regions for Risk of Korean Lung Cancer

  • Sung, Jae-Sook (Genomic Research Center for Lung and Breast/Ovarian Cancers, Korea University Anam Hospital) ;
  • Park, Kyong-Hwa (Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine) ;
  • Kim, Seung-Tae (Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine) ;
  • Kim, Yeul-Hong (Genomic Research Center for Lung and Breast/Ovarian Cancers, Korea University Anam Hospital)
  • Received : 2012.05.05
  • Accepted : 2012.08.04
  • Published : 2012.09.30

Abstract

AKT is a signal transduction protein that plays a central role in the tumorigenesis. There are 3 mammalian isoforms of this serine/threonine protein kinase-AKT1, AKT2, and AKT3-showing a broad tissue distribution. We first discovered 2 novel polymorphisms (AKT2 -9826 C/G and AKT3 -811 A/G), and we confirmed 6 known polymorphisms (AKT2 -9473 C/T, AKT2 -9151 C/T, AKT2 -9025 C/T, AKT2 -8618G/A, AKT3 -675 A/-, and AKT3 -244 C/T) of the AKT2 and AKT3 promoter region in 24 blood samples of Korean lung cancer patients using direct sequencing. To evaluate the role of AKT2 and AKT3 polymorphisms in the risk of Korean lung cancer, genotypes of the AKT2 and AKT3 polymorphisms (AKT2 -9826 C/G, AKT2 -9473 C/T, AKT2 -9151 C/T, AKT2 -9025 C/T, AKT2 -8618G/A, and AKT3 -675 A/-) were determined in 360 lung cancer patients and 360 normal controls. Statistical analyses revealed that the genotypes and haplotypes in the AKT2 and AKT3 promoter regions were not significantly associated with the risk of lung cancer in the Korean population. These results suggest that polymorphisms of the AKT2 and AKT3 promoter regions do not contribute to the genetic susceptibility to lung cancer in the Korean population.

Keywords

References

  1. Jung KW, Park S, Kong HJ, Won YJ, Lee JY, Park EC, et al. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2008. Cancer Res Treat 2011;43:1-11. https://doi.org/10.4143/crt.2011.43.1.1
  2. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 2002;346: 92-98. https://doi.org/10.1056/NEJMoa011954
  3. Devouassoux G, Pison C, Drouet C, Pin I, Brambilla C, Brambilla E. Early lung leukocyte infiltration, HLA and adhesion molecule expression predict chronic rejection. Transpl Immunol 2001;8:229-236. https://doi.org/10.1016/S0966-3274(00)00029-0
  4. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 1999;22:231-238. https://doi.org/10.1038/10290
  5. Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res 2002;30:3894-3900. https://doi.org/10.1093/nar/gkf493
  6. Sung JS, Han SG, Whang YM, Shin ES, Lee JW, Lee HJ, et al. Putative association of the single nucleotide polymorphisms in RASSF1A promoter with Korean lung cancer. Lung Cancer 2008;61:301-308. https://doi.org/10.1016/j.lungcan.2008.01.012
  7. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2002;2: 489-501. https://doi.org/10.1038/nrc839
  8. Brognard J, Clark AS, Ni Y, Dennis PA. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res 2001;61:3986-3997.
  9. Coffer PJ, Jin J, Woodgett JR. Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J 1998;335(Pt 1):1-13. https://doi.org/10.1042/bj3350001
  10. Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A 1999;96:4240-4245. https://doi.org/10.1073/pnas.96.8.4240
  11. Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression. Cell 2000;100:387-390. https://doi.org/10.1016/S0092-8674(00)80674-1
  12. Zinda MJ, Johnson MA, Paul JD, Horn C, Konicek BW, Lu ZH, et al. AKT-1, -2, and -3 are expressed in both normal and tumor tissues of the lung, breast, prostate, and colon. Clin Cancer Res 2001;7:2475-2479.
  13. Shoji K, Oda K, Nakagawa S, Hosokawa S, Nagae G, Uehara Y, et al. The oncogenic mutation in the pleckstrin homology domain of AKT1 in endometrial carcinomas. Br J Cancer 2009; 101:145-148. https://doi.org/10.1038/sj.bjc.6605109
  14. Hussain K, Challis B, Rocha N, Payne F, Minic M, Thompson A, et al. An activating mutation of AKT2 and human hypoglycemia. Science 2011;334:474. https://doi.org/10.1126/science.1210878
  15. Soung YH, Lee JW, Nam SW, Lee JY, Yoo NJ, Lee SH. Mutational analysis of AKT1, AKT2 and AKT3 genes in common human carcinomas. Oncology 2006;70:285-289. https://doi.org/10.1159/000096289
  16. Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol 2011;12:175-180. https://doi.org/10.1016/S1470-2045(10)70087-5
  17. Liu YC, Huang CL, Wu PL, Chang YC, Huang CH, Lane HY. Lack of association between AKT1 variances versus clinical manifestations and social function in patients with schizophrenia. J Psychopharmacol 2009;23:937-943. https://doi.org/10.1177/0269881108093840
  18. Lee KY, Joo EJ, Jeong SH, Kang UG, Roh MS, Kim SH, et al. No association between AKT1 polymorphism and schizophrenia: a case-control study in a Korean population and a metaanalysis. Neurosci Res 2010;66:238-245. https://doi.org/10.1016/j.neures.2009.11.005
  19. Hildebrandt MA, Yang H, Hung MC, Izzo JG, Huang M, Lin J, et al. Genetic variations in the PI3K/PTEN/AKT/mTOR pathway are associated with clinical outcomes in esophageal cancer patients treated with chemoradiotherapy. J Clin Oncol 2009;27:857-871. https://doi.org/10.1200/JCO.2008.17.6297
  20. Kim MJ, Kang HG, Lee SY, Jeon HS, Lee WK, Park JY, et al. AKT1 polymorphisms and survival of early stage non-small cell lung cancer. J Surg Oncol 2012;105:167-174. https://doi.org/10.1002/jso.22071
  21. Testa JR, Bellacosa A. AKT plays a central role in tumorigenesis. Proc Natl Acad Sci U S A 2001;98:10983-10985. https://doi.org/10.1073/pnas.211430998
  22. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 2007;448:439-444. https://doi.org/10.1038/nature05933
  23. Malanga D, Scrima M, De Marco C, Fabiani F, De Rosa N, De Gisi S, et al. Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung. Cell Cycle 2008;7:665-669. https://doi.org/10.4161/cc.7.5.5485
  24. Harris SL, Gil G, Robins H, Hu W, Hirshfield K, Bond E, et al. Detection of functional single-nucleotide polymorphisms that affect apoptosis. Proc Natl Acad Sci U S A 2005;102: 16297-16302. https://doi.org/10.1073/pnas.0508390102
  25. Zai CC, Romano-Silva MA, Hwang R, Zai GC, Deluca V, Müller DJ, et al. Genetic study of eight AKT1 gene polymorphisms and their interaction with DRD2 gene polymorphisms in tardive dyskinesia. Schizophr Res 2008;106: 248-252. https://doi.org/10.1016/j.schres.2008.08.036
  26. Ikeda M, Iwata N, Suzuki T, Kitajima T, Yamanouchi Y, Kinoshita Y, et al. Association of AKT1 with schizophrenia confirmed in a Japanese population. Biol Psychiatry 2004;56: 698-700. https://doi.org/10.1016/j.biopsych.2004.07.023
  27. Kim JH, Kim H, Lee KY, Choe KH, Ryu JS, Yoon HI, et al. Genetic polymorphisms of ataxia telangiectasia mutated affect lung cancer risk. Hum Mol Genet 2006;15:1181-1186. https://doi.org/10.1093/hmg/ddl033
  28. Jo UH, Han SG, Seo JH, Park KH, Lee JW, Lee HJ, et al. The genetic polymorphisms of HER-2 and the risk of lung cancer in a Korean population. BMC Cancer 2008;8:359. https://doi.org/10.1186/1471-2407-8-359
  29. Choi HS, Lee Y, Park KH, Sung JS, Lee JE, Shin ES, et al. Single-nucleotide polymorphisms in the promoter of the CDK5 gene and lung cancer risk in a Korean population. J Hum Genet 2009;54:298-303. https://doi.org/10.1038/jhg.2009.29
  30. Sung JS, Park KH, Kim ST, Seo JH, Shin SW, Kim JS, et al. No association between PIK3CA polymorphism and lung cancer risk in the Korean population. Genomics Inform 2010;8: 194-200. https://doi.org/10.5808/GI.2010.8.4.194
  31. Sung JS, Whang YM, Park KH, Ryu JS, Choi JG, Seo JH, et al. No association between promoter polymorphism of STK11 gene and lung cancer risk in the Korean population. Cancer Res Treat 2009;41:211-217. https://doi.org/10.4143/crt.2009.41.4.211

Cited by

  1. MiR-489 modulates cisplatin resistance in human ovarian cancer cells by targeting Akt3 vol.25, pp.7, 2014, https://doi.org/10.1097/CAD.0000000000000107
  2. A Functional Polymorphism (rs2494752) in the AKT1 Promoter Region and Gastric Adenocarcinoma Risk in an Eastern Chinese Population vol.6, pp.1, 2016, https://doi.org/10.1038/srep20008
  3. Triangle of AKT2, miRNA, and Tumorigenesis in Different Cancers pp.1559-0291, 2017, https://doi.org/10.1007/s12010-017-2657-3