DOI QR코드

DOI QR Code

Production of taxadiene from cultured ginseng roots transformed with taxadiene synthase gene

  • Cha, Mi-Jeong (School of Biotechnology, Yeungnam University) ;
  • Shim, Sang-Hee (School of Biotechnology, Yeungnam University) ;
  • Kim, Sung-Hong (Analysis Research Division, Daegu Center, Korea Basic Science Institute) ;
  • Kim, Ok-Tae (Planning and Coordination Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Lee, Se-Weon (Agricultural Microbiology Division, National Academy of Agricultural Science, RDA) ;
  • Kwon, Suk-Yoon (Green Bio Research Center, KRIBB) ;
  • Baek, Kwang-Hyun (School of Biotechnology, Yeungnam University)
  • Received : 2012.04.23
  • Accepted : 2012.05.16
  • Published : 2012.10.31

Abstract

Paclitaxel is produced by various species of yew trees and has been extensively used to treat tumors. In our research, a taxadiene synthase (TS) gene from Taxus brevifolia was used to transform the roots of cultured ginseng (Panax ginseng C.A. Meyer) to produce taxadiene, the unique skeletal precursor to taxol. The TS gene was successfully introduced into the ginseng genome, and the de novo formation of taxadiene was identified by mass spectroscopy profiling. Without any change in phenotypes or growth difference in a TS-transgenic ginseng line, the transgenic TSS3-2 line accumulated $9.1{\mu}g$ taxadiene per gram of dry weight. In response to the treatment of methyl jasmonate for 3 or 6 days, the accumulation was 14.6 and $15.9{\mu}g$ per g of dry weight, respectively. This is the first report of the production of taxadiene by engineering ginseng roots with a taxadiene synthase gene.

Keywords

References

  1. Wani, M. C., Taylor, H. L., Wall, M. E., Coggan, P. and McPhail, A. T. (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93, 2325-2327. https://doi.org/10.1021/ja00738a045
  2. Kumar, N. (1981) Taxol-induced polymerization of purified tubulin: mechanism of action. J. Biol. Chem. 256, 10435-10441.
  3. Parness, J. and Horwitz, S. B. (1981) Taxol binds to polymerized tubulin in vitro. J. Cell Biol. 91, 479-487 https://doi.org/10.1083/jcb.91.2.479
  4. Ahn, J.-H., Eum, K.-H. and Lee, M. (2010) Spry2 does not directly modulate Raf-1 kinase activity in v-Ha-ras-transformed NIH 3T3 fibroblasts. BMB Rep. 43, 205-211. https://doi.org/10.5483/BMBRep.2010.43.3.205
  5. Dieras, V. (1998) Taxanes in combination with doxorubicin in the treatment of the treatment of metastatic breast cancer. Semin. Oncol. 25, 18-22.
  6. Sgadari, C., Toschi, E., Palladino, Clelia., Barillari, Giovanni., Carlei, D., Cereseto, A., Ciccolella, C., Yarchoan, R., Monini, P., Stürzl, M. and Ensoli, B. (2000) Mechanism of paclitaxel activity in Kaposi's sarcoma. J. Immunol. 165, 509-517. https://doi.org/10.4049/jimmunol.165.1.509
  7. Pezzutto, J. (1996) Taxol production in plant cell culture comes of age. Nat. Biotechnol. 14, 1083. https://doi.org/10.1038/nbt0996-1083
  8. Rowinsky, E. K. and Donehower, R. C. (1995) Paclitaxel (Taxol). N. Engl. J. Med. 332, 1004-1014. https://doi.org/10.1056/NEJM199504133321507
  9. Woo, D. D. L., Miao, S. Y. P., Pelayo, J. C. and Woolf, A. S. (1994) Taxol inhibits progression of congenital polycystic kidney disease. Nature 368, 750-753. https://doi.org/10.1038/368750a0
  10. M. L. C. and Brahn, E. (1998) Taxol involution of collagen- induced arthritis: Ultrastructural correlation with the inhibition of synovitis and neovascularization. Clin. Immunol. Immunopathol. 86, 280-289. https://doi.org/10.1006/clin.1997.4479
  11. Vidensek, N., Lim, P., Campbell, A. and Carlson, C. (1990) Taxol content in bark, wood, root, leaf, twig, and seedling from several Taxus species. J. Nat. Prod. 53, 1609-1610. https://doi.org/10.1021/np50072a039
  12. Holton, R. A., Kim, H. B., Somoza, C., Liang, F., Biediger, R. J., Boatman, P. D., Shindo, M., Smith, C. C., Kim, S., Nadizadeh, H., Suzuki, Y., Tao, C., Vu, P., Tang, S., Zhang, P., Murthi, K. K., Gentile, L. N. and Liu, J. H. (1994) First total synthesis of taxol. 2. Completion of the C and D rings. J. Am. Chem. Soc. 116, 1599-1600. https://doi.org/10.1021/ja00083a067
  13. Holton, R. A., Somoza, C., Kim, H. B., Liang, F., Biediger, R. J., Boatman, P. D., Shindo, M., Smith, C. C., Kim, S., Nadizadeh, H., Suzuki, Y., Tao, C., Vu, P., Tang, S., Zhang, P., Murthi, K. K., Gentile, L. N. and Liu, J. H. (1994) First total synthesis of taxol. 1. Functionalization of the B ring. J. Am. Chem. Soc. 116, 1597-1598. https://doi.org/10.1021/ja00083a066
  14. Nicolaou, K. C., Nantermet, P. G., Ueno, H., Guy, R. K., Couladouros, E. A. and Sorensen, E. J. (1995. Total synthesis of taxol. 1. Retrosynthesis, degradation, and reconstitution. J. Am. Chem. Soc. 117, 624-633. https://doi.org/10.1021/ja00107a006
  15. Danishefsky, S. J., Masters, J. J., Young, W. B., Link, J. T., Snyder, L. B., Magee, T. V., Jung, D. K., Isaacs, R. C. A., Bornmann, W. G., Alaimo, C. A., Coburn, C. A. and Di Grandi, M. J. (1996) Total synthesis of baccatin III and taxol. J. Am. Chem. Soc. 118, 2843-2859. https://doi.org/10.1021/ja952692a
  16. Castor, T. P. and Theodore, A. T. (1993) Determination of taxol in Taxus media needles in the presence of interfering components. J. Liqu. Chromatogr. 16, 723-731. https://doi.org/10.1080/10826079308019559
  17. Stierle, A., Strobel, G. and Stierle, D. (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of pacific yew. Science 260, 214-216. https://doi.org/10.1126/science.8097061
  18. Li, J. Y., Stroble, G. Sidhy, R., Hess, W. M. and Ford, E. J. (1996) Endophytic taxol-producing fungi from bald cypress, Taxodium distichum. Microbiol. 142, 2223-2226. https://doi.org/10.1099/13500872-142-8-2223
  19. Kim, J. H., Yun, J. H., Hwang, Y. S., Byun, S. Y. and Kim, D. I. (1995) Production of taxol and related taxanes in Taxus brevifolia cell cultures: effect of sugar. Biotechnol. Lett. 17, 101-106. https://doi.org/10.1007/BF00134204
  20. Srinivasan, V., Pestchanker, L., Moser, S., Hirasuna, T. J., Taticek, R. A. and Schuler, M. L. (1995) Taxol production in bioreactors: kinetics of biomass accumulation, nutrient uptake, and taxol production by cell suspension of Taxus baccata. Biotechnol. Bioeng. 47, 666-676. https://doi.org/10.1002/bit.260470607
  21. Cusidó, R. M., Palazón, J., Bonfill, M., Navia-Osorio, A., Morales, C. and Piñol, M. T. (2002) Improved paclitaxel and baccatin III production in suspension cultures of Taxus media. Biotechnol. Prog. 18, 418-423. https://doi.org/10.1021/bp0101583
  22. Zhang, L., Ding, R., Chai, Y., Bonfill, M., Moyano, E., Oksman-Caldentey, K. M., Xu, T., Pi, Y., Wang, Z., Zhang, H., Kai, G., Liao, Z., Sun, X. and Tang, K. (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc. Natl. Acad. Sci. U.S.A. 101, 6786-6791. https://doi.org/10.1073/pnas.0401391101
  23. David, C., Chilton, M. D. and Tempé, J. (1984) Conservation of T-DNA in plants regenerated from hairy root cultures. Nature Biotech. 2, 73-76 https://doi.org/10.1038/nbt0184-73
  24. Kim, J. A., Baek, K. H., Son, Y. M., Son, S. H. and Shin, H. S. (2009) Hairy Root cultures of Taxus cuspidata for enhanced production of Paclitaxel. JKSABC. 52, 144-150. https://doi.org/10.3839/jksabc.2009.027
  25. Walker, K. and Croteau, R. (2001) Molecules of interest: Taxol biosynthetic genes. Phytochem. 58, 1-7. https://doi.org/10.1016/S0031-9422(01)00160-1
  26. Hezari, M., Lewis, N. G. and Croteau, R. (1995) Purification and characterization of taxa-4(5),11(12)-diene synthase from pacific yew (Taxus brevifolia) that catalyzes the first committed step of Taxol biosynthesis. Arch. Biochem. Biophys. 322, 437-444. https://doi.org/10.1006/abbi.1995.1486
  27. Wang, W., Shi, Q., Zhu, P., Ouyang, T., Li, N. and Cheng, K. D. (2002) cDNA cloning, expression and characterization of taxadiene synthase, a diterpene cyclase from Taxus chinensis. Acta. Bot. Sin. 44, 181-187.
  28. Kim, D. Y., Jung, M. S., Park, Y. G, Yuan, H. D., Quan, H. Y. and Chung, S. H. (2011) Ginsenoside Rh2(S) induces the differentiation and mineralization of osteoblastic MC3T3-E1 cells through activation of PKD and p38 MAPK pathways. BMB Rep. 44, 659-664. https://doi.org/10.5483/BMBRep.2011.44.10.659
  29. Kovacs, K., Zhang, L., Linforth, R. S. T., Whittaker, B., Hayes, C. J. and Fray, R. G. (2007) Redirection of carotenoid metabolism for the efficient production of taxadiene [taxa-4(5),11(12)-diene] in transgenic tomato fruit. Transgenic Res. 16, 121-126. https://doi.org/10.1007/s11248-006-9039-x
  30. Anterola, A., Shanle, E., Perroud, P. and Quatrano, R. (2009) Production of taxa-4(5),11(12)-diene by transgenic Physcomitrella patens. Transgenic Res. 18, 655-660. https://doi.org/10.1007/s11248-009-9252-5
  31. Besumbes, O., Sauret-Gueeto, S., Phillips, M. A., Imperial, S., Rodriguez-Concepcion, M., Boronat, A. (2004) Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of taxol. Biotechnol. Bioeng. 88, 168-175. https://doi.org/10.1002/bit.20237
  32. Yasumura, Y., Crumpton-Taylor, M., Fuentes, S., Harberd, N. P. (2007) Step-by-step acquisition of the gibberellin- DELLA growth-regulatory mechanism during land-plant evolution. Curr. Biol. 17, 1225-1230. https://doi.org/10.1016/j.cub.2007.06.037
  33. Hood, E. E., Gelvin , S. B., Melchers, L. S. and Hoekema, A. (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 2, 208-218. https://doi.org/10.1007/BF01977351
  34. Valvekens, D., Montagu, M. V. and Lijsebettens, M. V. (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc. Natl. Acad. Sci. U.S.A. 85, 5536- 5540. https://doi.org/10.1073/pnas.85.15.5536
  35. Dellaporta, S. L., Wood, J. and Hicks, J. B. (1983) A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1, 19-21. https://doi.org/10.1007/BF02712670

Cited by

  1. Engineering Isoprenoid Biosynthesis inArtemisia annuaL. for the Production of Taxadiene: A Key Intermediate of Taxol vol.2015, 2015, https://doi.org/10.1155/2015/504932
  2. Taxadiene-5α-ol is a minor product of CYP725A4 when expressed in Escherichia coli 2017, https://doi.org/10.1002/bab.1606
  3. Natural and engineered production of taxadiene with taxadiene synthase vol.112, pp.2, 2015, https://doi.org/10.1002/bit.25468
  4. Metabolic engineering of Nicotiana benthamiana for the increased production of taxadiene vol.33, pp.6, 2014, https://doi.org/10.1007/s00299-014-1568-9
  5. Development and Utilization of Medicinal Plant Atractylodes lancea vol.05, pp.03, 2016, https://doi.org/10.12677/BR.2016.53011
  6. A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp. vol.32, pp.6, 2014, https://doi.org/10.1016/j.biotechadv.2014.03.002
  7. Synthetic biology for production of natural and new-to-nature terpenoids in photosynthetic organisms vol.87, pp.1, 2016, https://doi.org/10.1111/tpj.13138
  8. Structural and Chemical Biology of Terpenoid Cyclases vol.117, pp.17, 2017, https://doi.org/10.1021/acs.chemrev.7b00287
  9. Synthetic biology strategies toward heterologous phytochemical production vol.35, pp.9, 2018, https://doi.org/10.1039/C8NP00028J