DOI QR코드

DOI QR Code

Effects of Powder Morphology and Powder Preheating on the Properties and Deposition Behavior of Titanium Coating Layer Manufactured by Cold Spraying

저온 분사 티타늄 코팅층의 특성 및 적층 거동에 미치는 분말 형상과 분말 예열의 영향

  • 황재남 (국립안동대학교 신소재공학부) ;
  • 이명주 (국립안동대학교 신소재공학부) ;
  • 김형준 (포항산업과학연구원) ;
  • 오익현 (한국생산기술연구원) ;
  • 이기안 (국립안동대학교 신소재공학부)
  • Received : 2012.07.23
  • Accepted : 2012.08.16
  • Published : 2012.10.28

Abstract

Cold spray deposition using Titanium powder was carried out to investigate the effects of powder morphology and powder preheating on the coating properties such as porosity and hardness. The in-flight particle velocity of Ti powder in cold spray process was directly measured using the PIV (particle image velocimetry) equipment. Two types of powders (spherical and irregular ones) were used to manufacture cold sprayed coating layer. The results showed that the irregular morphology particle appeared higher in-flight particle velocity than that of the spherical one under the same process condition. The coating layer using irregular morphology powder represented lower porosity level and higher hardness. Two different preheating conditions (no preheating and preheating at $500^{\circ}C$) were used in the process of cold spraying. The porosity decreased and the hardness increased by conducting preheating at $500^{\circ}C$. It was found that the coating properties using different preheating conditions were dependent not on the particle velocity but on the deformation temperature of particle. The deposition mechanism of particles in cold spray process was also discussed based on the experimental results of in flight-particle velocity.

Keywords

References

  1. Y. T. Lee: Machine & Mat., 21 (2009) 74. (Korean)
  2. J. Villafuerte: Metal Fishing, 108 (2010) 37.
  3. W. Wong: Adv. Mater. Res., 89 (2010) 639.
  4. ASM Handbook 10th ed., ASM Inter. (1992) 610.
  5. G. Lutjering and J. C. Williams: Springer-Verlag Berlin Heidelberg, Germany (2003) 57.
  6. F. H. Froes, V. S. Moxson and V. A. Duz: 2004 Inter. Conf. on PM, Chicago, USA (2004) 178.
  7. F. H. Froes, S. J. Mashl, V. Moxson, J. C. Hebeison and V. A. Duz: JOM., 11 (2004) 46.
  8. A. Parapin, V. Kosarev, S. Klinkov, A. Alkimov and A. Fomin: Cold spray technology, Elsevier (2001) 1.
  9. T. H. V. Steenkiste: Key Eng. Mater., 197 (2001) 59. https://doi.org/10.4028/www.scientific.net/KEM.197.59
  10. R. C. McCone: 2003 International Thermal Spray Conference, ASM International, U.S.A. (2003) 63.
  11. H. J. Kim, C. Lee and S. Y. Hwang: Mater. Sci. Eng. A, 391 (2005) 243. https://doi.org/10.1016/j.msea.2004.08.082
  12. H. Choi, S. Yoon, S. Uhm and C. Lee: Surf. Coat. Technology., 192 (2005) 374. https://doi.org/10.1016/j.surfcoat.2004.04.090
  13. T. Schmidt, F. Gäertner and H. Kreye: J. Therm. Spray Technol., 15 (2006) 488. https://doi.org/10.1361/105996306X147144
  14. H. J. Kim, J. H. Jang, D. H. Jung and C. Lee: J. Kor. Inst. Met. & Mater., 44 (2006) 697. (Korean)
  15. T. Schmidt, F. Gaertner and H. Kreye: J. Therm. Spray Technol., 15 (2006) 488. https://doi.org/10.1361/105996306X147144
  16. T. V. Steenkiste and J. R. Smith: J. Therm. Spray Technol., 12 (2004) 274.
  17. J. S. Yu, H. J. Kim, I. H. Oh and K. A. Lee: J. Kor. Powd. Met. Inst., 19 (2012) 110. (Korean) https://doi.org/10.4150/KPMI.2012.19.2.110
  18. F. Raletz, M. Vardelle and D. Ezo'o: Suf. and Coat. Tech., 201 (2006) 1942. (Korean) https://doi.org/10.1016/j.surfcoat.2006.04.061
  19. H. Fukanuma, N. Ohno, B. Sun and R. Huang: Suf. and Coat. Tech., 201 (2006) 1935. https://doi.org/10.1016/j.surfcoat.2006.04.035

Cited by

  1. Manufacturing and Properties of CGI-based Composite Coating Layer Utilizing a Warm Spray Process and Cu-Ga and Cu-In Mixed Powders vol.21, pp.3, 2014, https://doi.org/10.4150/KPMI.2014.21.3.229
  2. Effects Of Process Parameters On Cu Powder Synthesis Yield And Particle Size In A Wet-Chemical Process vol.60, pp.2, 2015, https://doi.org/10.1515/amm-2015-0107