DOI QR코드

DOI QR Code

Fiber-Matrix Interface Characterization through the Microbond Test

  • Received : 2012.09.10
  • Accepted : 2012.09.14
  • Published : 2012.09.30

Abstract

Fiber reinforced polymer matrix composites are widely used to provide protection against ballistic impact and blast events. There are several factors that govern the structural response and mechanical properties of a textile composite structure, of which the fiber-matrix interfacial behavior is a crucial determinant. This paper reviews the microbond or microdroplet test methodology that is used to characterize the fiber-matrix interfacial behavior, particularly the interface shear strength (IFSS). The various analytical, experimental, and numerical approaches applied to the microbond test are reviewed in detail.

Keywords

References

  1. Advani, S.G., Murat Sozer, E., Process Modeling in Composites Manufacturing, Second ed., CRC Press, 2011.
  2. Chung, D.D.L., Composite Materials Science and Applications, Second ed., Springer, 2010.
  3. Mason, K., "Sizing up Fiber Sizings", URL: http://www.compositesworld.com/articles/sizing-up-fiber-sizings. [cited 06 Sep 2012].
  4. Strong, A.B., "Sizings and Coupling Agents - The "Magic" of Composite Performance", Brigham Young University, URL:http://strong.groups.et.byu.net/pages/articles/articles/sizings.pdf. [cited 09 Sep 2012].
  5. Thomason, J.L., and Adzima, L.J., "Sizing up the interphase: an insider's guide to the science of sizing", Composites Part A: Applied Science and Manufacturing, Vol. 32, No. 3-4, 2001, pp. 313-321. https://doi.org/10.1016/S1359-835X(00)00124-X
  6. Zhang, X., Fan, X., Yan, C., Li, H., Zhu, Y., Li, X., and Yu, L., "Interfacial Microstructure and Properties of Carbon Fiber Composites Modified with Graphene Oxide", Applied Materials & Interfaces, Vol. 4, 2012, pp. 1543-1552. https://doi.org/10.1021/am201757v
  7. Subramanian, S., Lesko, J.J., Reifsnider,K.L., and Stinchcomb,W.W., "Characterization of the Fiber-Matrix Interphase and its Influence on Mechanical Properties of Unidirectional Composites", Journal of Composite Materials, Vol. 30, 1996, pp. 309-332. https://doi.org/10.1177/002199839603000302
  8. Pisanova, E., Zhandarov, S., Mäder, E., Ahmad, I., and Young, R.J., "Three techniques of interfacial bond strength estimation from direct observation of crack initiation and propagation in polymer-fibre systems", Composites Part A: Applied Science and Manufacturing, Vol. 32, No. 3-4, 2001, pp. 435-443. https://doi.org/10.1016/S1359-835X(00)00054-3
  9. Zhuang, R.C., Burghardt, T., Plonka, R., Liu, J.W., and Mader, E., "Affecting glass fibre surfaces and composite properties by two stage sizing application", eXPRESS Polymer Letters, Vol. 4, No. 12, 2010, pp. 798-808. https://doi.org/10.3144/expresspolymlett.2010.96
  10. Gaur, U., and Miller, B., "Microbond method for determination of the shear strength of a fiber/resin interface: Evaluation of experimental parameters", Composites Science and Technology, Vol. 34, No. 1, 1989, pp. 35-51. https://doi.org/10.1016/0266-3538(89)90076-6
  11. Mader, E., Grundke, K., Jacobasch, H.-J., and Wachinger, G., "Surface, interphase and composite property relations in fibre-reinforced polymers", Composites, Vol. 25, No. 7, 1994, pp. 739-744. https://doi.org/10.1016/0010-4361(94)90209-7
  12. Thomason, J.L., and Schoolenberg, G.E., "An investigation of glass fibre/polypropylene interface strength and its effect on composite properties", Composites, Vol. 25, No. 3, 1994, pp. 197-203. https://doi.org/10.1016/0010-4361(94)90017-5
  13. Adams, D.F., "A Micromechanics Analysis of the Influence of the Interface on the Performance of Polymer- Matrix Composites", Journal of Reinforced Plastics and Composites, Vol. 6, No. 1, 1987, pp. 66-88. https://doi.org/10.1177/073168448700600106
  14. King, T.R., Blackketter, D.M., Walrath, D.E., and Adams, D.F., "Micromechanics Prediction of the Shear Strength of Carbon Fiber/Epoxy Matrix Composites: The Influence of the Matrix and Interface Strengths", Journal of Composite Materials, Vol. 26, No. 4, 1992, pp. 558-573. https://doi.org/10.1177/002199839202600406
  15. Feih, S., Wei, J., Kingshott, P., and Sorensen, B.F., "The influence of fibre sizing on the strength and fracture toughness of glass fibre composites", Composites Part A: Applied Science and Manufacturing, Vol. 36, No. 2, 2005, pp. 245-255. https://doi.org/10.1016/j.compositesa.2004.06.019
  16. Larson, B.K., and Drzal, L.T., "Glass fibre sizing/ matrix interphase formation in liquid composite moulding: effects on fibre/matrix adhesion and mechanical properties", Composites, Vol. 25, No. 7, 1994, pp. 711-721. https://doi.org/10.1016/0010-4361(94)90206-2
  17. Keusch, S., Queck, H., and Gliesche, K., "Influence of glass fibre/epoxy resin interface on static mechanical properties of unidirectional composites and on fatigue performance of cross ply composites", Composites Part A: Applied Science and Manufacturing, Vol. 29, No. 5-6, 1998, pp. 701-705. https://doi.org/10.1016/S1359-835X(97)00106-1
  18. Miller, B., Muri, P., and Rebenfeld, L., "A microbond method for determination of the shear strength of a fiber/ resin interface", Composites Science and Technology, Vol. 28, No. 1, 1987, pp. 17-32. https://doi.org/10.1016/0266-3538(87)90059-5
  19. Adams, D., "Fiber-matrix interfacial bond test methods", URL:http://www.compositesworld.com/articles/fiber-matrix-interfacial-bond-test-methods. [cited 08 Sep 2012].
  20. Zheng, B., and Ji, X., "Stress singularity analyses of interface ends in micro-mechanics tests", Composites Science and Technology, Vol. 62, No. 3, 2002, pp. 355-365. https://doi.org/10.1016/S0266-3538(01)00221-4
  21. Bechel, V.T., and Sottos, N.R., "A comparison of calculated and measured debond lengths from fiber pushout tests", Composites Science and Technology, Vol. 58, No. 11, 1998, pp. 1727-1739. https://doi.org/10.1016/S0266-3538(98)00038-4
  22. Netravali, A.N., Henstenburg, R.B., Phoenix, S.L., and Schwartz, P., "Interfacial shear strength studies using the single-filament-composite test. I: Experiments on graphite fibers in epoxy", Polymer Composites, Vol. 10, No. 4, 1989, pp. 226-241. https://doi.org/10.1002/pc.750100405
  23. Raoa, V., Herrera-Franco, P., Ozzelloa, A.D., and Drzal, L.T., "A Direct Comparison of the Fragmentation Test and the Microbond Pull-out Test for Determining the Interfacial Shear Strength", Journal of Adhesion, Vol. 34, No. 1-4, 1991, pp. 65-77. https://doi.org/10.1080/00218469108026506
  24. Chandra, N., and Ghonem, H., "Interfacial mechanics of push-out tests: theory and experiments", Composites Part A: Applied Science and Manufacturing, Vol. 32, No. 3-4, 2001, pp. 575-584. https://doi.org/10.1016/S1359-835X(00)00051-8
  25. Pitkethly, M.J., Favre, J.P., Gaur, U., Jakubowski, J., Mudrich, S.F., Caldwell, D.L., Drzal, L.T., Nardin, M., Wagner, H.D., Di Landro, L., Hampe, A., Armistead, J.P., Desaeger, M., and Verpoest, I., "A round-robin programme on interfacial test methods", Composites Science and Technology, Vol. 48, No. 1-4, 1993, pp. 205-214. https://doi.org/10.1016/0266-3538(93)90138-7
  26. Hou, Y., and Sun, T., "An improved method to make the microdroplet single fiber composite specimen for determining the interfacial shear strength", Journal of Materials Science, Vol. 47, No. 11, 2012, pp. 4775-4778. https://doi.org/10.1007/s10853-012-6317-2
  27. Gao, X., Jensen, R.E., McKnight, S.H., and Gillespie Jr., J.W., "Effect of colloidal silica on the strength and energy absorption of glass fiber/epoxy interphases", Composites Part A: Applied Science and Manufacturing, Vol. 42, No. 11, 2011, pp. 1738-1747. https://doi.org/10.1016/j.compositesa.2011.07.029
  28. Hampe, A., and Marotzke, C., "The Energy Release Rate of the Fiber/Polymer Matrix Interface: Measurement and Theoretical Analysis", Journal of Reinforced Plastics and Composites, Vol. 16, No. 4, 1997, pp. 341-352. https://doi.org/10.1177/073168449701600405
  29. Yang, L., and Thomason, J.L., "Interface strength in glass fibre-polypropylene measured using the fibre pull-out and microbond methods", Composites Part A: Applied Science and Manufacturing, Vol. 41, No. 9, 2010, pp. 1077-1083. https://doi.org/10.1016/j.compositesa.2009.10.005
  30. Zu, M., Li, Q., Zhu, Y., Dey, M., Wang, G., Lu, W., Deitzel, J.M., Gillespie Jr., J.W., Byun, J., and Chou, T., "The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test", Carbon, Vol. 50, No. 3, 2012, pp. 1271-1279. https://doi.org/10.1016/j.carbon.2011.10.047
  31. Zinck, P., Wagner, H.D., Salmon, L., and Gerard, J.F., "Are microcomposites realistic models of the fibre/matrix interface? I. Micromechanical modelling", Polymer, Vol. 42, No. 12, 2001, pp. 5401-5413. https://doi.org/10.1016/S0032-3861(00)00870-3
  32. Miller, B., Gaur, U., and Hirt, D.E., "Measurement and mechanical aspects of the microbond pull-out technique for obtaining fiber/resin interfacial shear strength", Composites Science and Technology, Vol. 42, No. 1-3, 1991, pp. 207-219. https://doi.org/10.1016/0266-3538(91)90018-K
  33. Kang, S., Lee, D., and Choi, N., "Fiber/epoxy interfacial shear strength measured by the microdroplet test", Composites Science and Technology, Vol. 69, No. 2, 2009, pp. 245-251. https://doi.org/10.1016/j.compscitech.2008.10.016
  34. Gao, X. "Tailored Interphase Structure for Improved Strength and Energy Absorption of Composites", Ph.D Dissertation, Materials Science & Engineering, University of Delaware, Newark, Delaware, 2006.
  35. Liu, Z., Yuan, X., Beck, A.J., and Jones, F.R., "Analysis of a modified microbond test for the measurement of interfacial shear strength of an aqueous-based adhesive and a polyamide fibre", Composites Science and Technology, Vol. 71, No. 13, 2011, pp. 1529-1534. https://doi.org/10.1016/j.compscitech.2011.06.001
  36. Hozdic, A., Kalyanasundaram, S., Lowe, A., and Stachurski, Z.H., "The microdroplet test: experimental and finite element analysis of the dependance of the failure mode on droplet shape", Composite Interfaces, Vol. 6, No. 4, 1999, pp. 375-389.
  37. Yang, L., and Thomason, J.L., "Development and application of micromechanical techniques for characterising interfacial shear strength in fibre-thermoplastic composites", Polymer Testing, Vol. 31, No. 7, 2012, pp. 895-903. https://doi.org/10.1016/j.polymertesting.2012.07.001
  38. Thomason, J.L., and Yang, L., "Temperature dependence of the interfacial shear strength in glass- fibre polypropylene composites", Composites Science and Technology, Vol. 71, No. 13, 2011, pp. 1600-1605. https://doi.org/10.1016/j.compscitech.2011.07.006
  39. Gao, X., Jensen, R.E., Li, W., Deitzel, J., McKnight, S.H., and Gillespie, J.W., "Effect of Fiber Surface Texture Created from Silane Blends on the Strength and Energy Absorption of the Glass Fiber/Epoxy Interphase", Journal of Composite Materials, Vol. 42, No. 5, 2008, pp. 513-534. https://doi.org/10.1177/0021998307086203
  40. Herrera-Franco, P.J., and Drzal, L.T., "Comparison of methods for the measurement of fibre/matrix adhesion in composites", Composites, Vol. 23, No. 1, 1992, pp. 2-27. https://doi.org/10.1016/0010-4361(92)90282-Y
  41. Pandey, G., Kareliya, C. H., and Singh, R. P., "Effect of Testing Parameters on Data Scatter in Microbond Testing", Proceedings of the SEM Annual Conference, Albuquerque, New Mexico USA, June 2009.
  42. Pandey, G., Kareliya, C.H., and Singh, R.P., "A study of the effect of experimental test parameters on data scatter in microbond testing", Journal of Composite Materials, Vol. 46, No. 3, 2012, pp. 275-284. https://doi.org/10.1177/0021998311410508
  43. Heilhecker, H., Cross, W., Pentland, R., Griswold, C., Kellar, J.J., and Kjerengtroen, L., "The vice angle in the microbond test", Journal of Materials Science Letters, Vol. 19, No. 23, 2000, pp. 2145-2147. https://doi.org/10.1023/A:1026787012473
  44. Nishikawa, M., Okabe, T., Hemmi, K., and Takeda, N., "Micromechanical modeling of the microbond test to quantify the interfacial properties of fiber-reinforced composites", International Journal of Solids and Structures, Vol. 45, No. 14-15, 2008, pp. 4098-4113. https://doi.org/10.1016/j.ijsolstr.2008.02.021
  45. Chou, C.T., Gaur, U., and Miller, B., "The effect of microvise gap width on microbond pull-out test results", Composites Science and Technology, Vol. 51, No. 1, 1994, pp. 111-116. https://doi.org/10.1016/0266-3538(94)90161-9
  46. Day, R.J., and Rodrigez, J.V.C., "Investigation of the micromechanics of the microbond test", Composites Science and Technology, Vol. 58, No. 6, 1998, pp. 907-914. https://doi.org/10.1016/S0266-3538(97)00197-8
  47. Zinck, P., Wagner, H.D., Salmon, L., and Gerard, J.F., "Are microcomposites realistic models of the fibre/matrix interface? II. Physico-chemical approach", Polymer, Vol. 42, No. 15, 2001, pp. 6641-6650. https://doi.org/10.1016/S0032-3861(00)00871-5
  48. Rice, J.R., and Rosengren, G.F., "Plane strain deformation near a crack tip in a power-law hardening material", Journal of the Mechanics and Physics of Solids, Vol. 16, No. 1, 1968, pp. 1-12. https://doi.org/10.1016/0022-5096(68)90013-6
  49. Scheer, R.J., and Nairn, J.A., "A Comparison of Several Fracture Mechanics Methods for Measuring Interfacial Toughness with Microbond Tests", Journal of Adhesion, Vol. 53, 1995, pp. 45-68. https://doi.org/10.1080/00218469508014371
  50. Ash, J.T., Cross, W.M., Svalstad, D., Kellar, J.J., and Kjerengtroen, L., "Finite element evaluation of the microbond test: meniscus effect, interphase region, and vise angle", Composites Science and Technology, Vol. 63, No. 5, 2003, pp. 641-651. https://doi.org/10.1016/S0266-3538(02)00256-7
  51. Hampe, A., Kalinka, G., Meretz, S., and Schulz, E., "An advanced equipment for single-fibre pull-out test designed to monitor the fracture process", Composites, Vol. 26, No. 1, 1995, pp. 40-46. https://doi.org/10.1016/0010-4361(94)P3628-E
  52. Zhandarov, S., Pisanova, E., and Mader, E., "Is there any contradiction between the stress and energy failure criteria in micromechanical tests? Part III. Experimental observation of crack propagation in the microbond test", Journal of Adhesion Science and Technology, Vol. 19, No. 8, 2005, pp. 679-704. https://doi.org/10.1163/1568561054890462
  53. Morlin, B., and Czigany, T., "Cylinder test: Development of a new microbond method", Polymer Testing, Vol. 31, No. 1, 2012, pp. 164-170. https://doi.org/10.1016/j.polymertesting.2011.10.007
  54. Choi, N., Park, J., and Kang, S., "Quasi-Disk Type Microbond Pull-Out Test for Evaluating Fiber/Matrix Adhesion in Composites", Journal of Composite Materials, Vol. 43, No. 16, 2009, pp. 1663-1677. https://doi.org/10.1177/0021998309339636
  55. Choi, N., and Park, J., "Fiber/matrix interfacial shear strength measured by a quasi-disk microbond specimen", Composites Science and Technology, Vol. 69, No. 10, 2009, pp. 1615-1622. https://doi.org/10.1016/j.compscitech.2009.03.012
  56. Mendels, D.-A., Leterrier, Y., and Manson, J.-.E., "The Influence of Internal Stresses on the Microbond Test - I: Theoretical Analysis", Journal of Composite Materials, Vol. 36, No. 3, 2002, pp. 347-363. https://doi.org/10.1177/0021998302036003508
  57. Park, J., Kim, D., Kong, J., Kim, M., Kim, W., and Park, I., "Interfacial Adhesion and Microfailure Modes of Electrodeposited Carbon Fiber/Epoxy-PEI Composites by Microdroplet and Surface Wettability Tests", Journal of colloid and interface science, Vol. 249, No. 1, 2002, pp. 62-77. https://doi.org/10.1006/jcis.2002.8252
  58. Craven, J.P., Cripps, R., and Viney, C., "Evaluating the silk/epoxy interface by means of the Microbond Test", Composites Part A: Applied Science and Manufacturing, Vol. 31, No. 7, 2000, pp. 653-660. https://doi.org/10.1016/S1359-835X(00)00042-7
  59. Zhandarov, S., and Mader, E., "Peak force as function of the embedded length in pull-out and microbond tests: effect of specimen geometry", Journal of Adhesion Science and Technology, Vol. 19, No. 10, 2005, pp. 817-855. https://doi.org/10.1163/1568561054929937
  60. Zhandarov, S., Pisanova, E., and Mader, E., "Is there any contradiction between the stress and energy failure criteria in micromechanical tests? Part II. Crack propagation: Effect of friction on force-displacement curves", Composite Interfaces, Vol. 7, No. 3, 2000, pp. 149-175. https://doi.org/10.1163/156855400300185289
  61. Zhandarov, S., Gorbatkina, Y., and Mäder, E., "Adhesional pressure as a criterion for interfacial failure in fibrous microcomposites and its determination using a microbond test", Composites Science and Technology, Vol. 66, No. 15, 2006, pp. 2610-2628. https://doi.org/10.1016/j.compscitech.2006.03.023
  62. Cox, H.L., "The elasticity and strength of paper and other fibrous materials", British Journal of Applied Physics, Vol. 3, 1952, pp. 72-79. https://doi.org/10.1088/0508-3443/3/3/302
  63. Nairn, J.A., "On the use of shear-lag methods for analysis of stress transfer in unidirectional composites", Mechanics of Materials, Vol. 26, No. 2, 1997, pp. 63-80. https://doi.org/10.1016/S0167-6636(97)00023-9
  64. Bechel, V.T., "The Application of Debond Length Measurements to Examine the Accuracy of Composite Interface Properties Derived from Fiber Pushout Testing", Ph.D Dissertation, Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 1997.
  65. Scheer, R.J., and Nairn, J.A., "Variational mechanics analysis of stresses and failure in microdrop debond specimens", Composites Engineering, Vol. 2, No. 8, 1992, pp. 641-654. https://doi.org/10.1016/0961-9526(92)90022-X
  66. Singletary, J., Baines, R.W., Beckett, W., and Friedrich, K., "Examination of fundamental assumptions of analytical modeling of fiber pullout test", Mechanics of Composite Materials and Structures, Vol. 4, No. 2, 1997, pp. 95-112. https://doi.org/10.1080/10759419708945876
  67. Zhandarov, S., Pisanova, E., and Lauke, B., "Is there any contradiction between the stress and energy failure criteria in micromechanical tests? Part I. Crack initiation: stresscontrolled or energy-controlled?", Composite Interfaces, Vol. 5, No. 5, 1998, pp. 387-404.
  68. Carroll, B.J., "The accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fiber systems", Journal of colloid and interface science, Vol. 57, No. 3, 1976, pp. 488-495. https://doi.org/10.1016/0021-9797(76)90227-7
  69. Song, B., Bismarck, A., Tahhan, R., and Springer, J., "A Generalized Drop Length-Height Method for Determination of Contact Angle in Drop-on-Fiber Systems", Journal of colloid and interface science, Vol. 197, No. 1, 1998, pp. 68-77. https://doi.org/10.1006/jcis.1997.5218
  70. Yamaki, J., and Katayama, Y., "New method of determining contact angle between monofilament and liquid", Journal of Applied Polymer Science, Vol. 19, No. 10, 1975, pp. 2897-2909. https://doi.org/10.1002/app.1975.070191025
  71. Wu,X.-F.,Dzenis,Y.A., "Droplet on a fiber: geometrical shape and contact angle", Acta Mechanica, Vol. 185, No. 3-4, 2006, pp. 215-225. https://doi.org/10.1007/s00707-006-0349-0
  72. Lin, G., Geubelle, P.H., and Sottos, N.R., "Simulation of fiber debonding with friction in a model composite pushout test", International Journal of Solids and Structures, Vol. 38, No. 46-47, 2001, pp. 8547-8562. https://doi.org/10.1016/S0020-7683(01)00085-3
  73. Barenblatt, G.I., "The mathematical theory of equilibrium cracks in brittle fracture", Advances in Applied Mechanics, Vol. 7, 1962, pp. 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2
  74. Camanho, P.P., Davila, C.G., and de Moura, M.F., "Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials", Journal of Composite Materials, Vol. 37, No. 16, 2003, pp. 1415-1438. https://doi.org/10.1177/0021998303034505
  75. Schuller, T., Bahr, U., Beckert, W., and Lauke, B., "Fracture mechanics analysis of the microbond test", Composites Part A: Applied Science and Manufacturing, Vol. 29, No. 9-10, 1998, pp. 1083-1089. https://doi.org/10.1016/S1359-835X(98)00044-X
  76. Beckert, W., and Lauke, B., "Critical discussion of the single-fibre pull-out test: does it measure adhesion?", Composites Science and Technology, Vol. 57, No. 12, 1998, pp. 1689-1706. https://doi.org/10.1016/S0266-3538(97)00107-3
  77. Tsai, J.H., Patra, A., and Wetherhold, R., "Finite element simulation of shaped ductile fiber pullout using a mixed cohesive zone/friction interface model", Composites Part A: Applied Science and Manufacturing, Vol. 36, No. 6, 2005, pp. 827-838. https://doi.org/10.1016/j.compositesa.2004.10.025
  78. LSTC. LS-DYNA Version 971 Keyword User's Manual, 2010.
  79. Loikkanen, M., Praveen, G., and Powell, D., "Simulation of Ballistic Impact on Composite Panels", 10th International LS-DYNA Users Conference, Dearborn, Michigan USA, 2008.
  80. Chandrasekaran, V.C.S., Advani, S.G., and Santare, M.H., "Influence of resin properties on interlaminar shear strength of glass/epoxy/MWNT hybrid composites", Composites Part A: Applied Science and Manufacturing, Vol. 42, No. 8, 2011, pp. 1007-1016. https://doi.org/10.1016/j.compositesa.2011.04.004
  81. Jung Yim, J.H. "Tailoring Interfacial Performance of UHMW PE Fiber Composites Via Covalent Bonding Assisted by Plasma Surface Treatments", Ph. D Dissertation, Department of Chemical & Biological Engineering, Drexel University, PA, 2011.
  82. Ayala, A. "Effect of Intermolecular Hydrogen Bonding on the Micro-Mechanical Properties of High Performance Organic Fibers", Ph. D Dissertation, Materials Science & Engineering, University of Delaware, Newark, Delaware, 2008.

Cited by

  1. Microdebond test development and interfacial shear strength evaluation of basalt and glass fibre reinforced polypropylene composites vol.51, pp.29, 2017, https://doi.org/10.1177/0021998317697810
  2. Method to measure orientation of discontinuous fiber embedded in the polymer matrix from computerized tomography scan data vol.29, pp.12, 2016, https://doi.org/10.1177/0892705715584411
  3. Interfacial shear strength characterization of GMA-grafted UHMWPE fiber/epoxy/nano clay hybrid nanocomposite materials vol.6, pp.48, 2016, https://doi.org/10.1039/C6RA05027A
  4. A finite-element model and experimental investigation of the influence of pre-straining of wire on the sensitivity of binary crack sensors vol.8, pp.4, 2018, https://doi.org/10.1007/s13349-018-0290-7