DOI QR코드

DOI QR Code

Porcine LMNA Is a Positional Candidate Gene Associated with Growth and Fat Deposition

  • Choi, Bong-Hwan (Animal Genomics and Bioinformatics Division, National Livestock Research Institute, RDA) ;
  • Lee, Jung-Sim (Animal Genomics and Bioinformatics Division, National Livestock Research Institute, RDA) ;
  • Lee, Seung-Hwan (Animal Genomics and Bioinformatics Division, National Livestock Research Institute, RDA) ;
  • Kim, Seung-Chang (Animal Genomics and Bioinformatics Division, National Livestock Research Institute, RDA) ;
  • Kim, Sang-Wook (Department of Animal Science, Chungbuk National University) ;
  • Kim, Kwan-Suk (Department of Animal Science, Chungbuk National University) ;
  • Lee, Jun-Heon (Division of Animal Science and Resources, College of Agriculture and Life Sciences Chungnam National University) ;
  • Seong, Hwan-Hoo (Animal Genomics and Bioinformatics Division, National Livestock Research Institute, RDA) ;
  • Kim, Tae-Hun (Animal Genomics and Bioinformatics Division, National Livestock Research Institute, RDA)
  • Received : 2012.05.25
  • Accepted : 2012.07.03
  • Published : 2012.12.01

Abstract

Crosses between Korean and Landrace pigs have revealed a large quantitative trait loci (QTL) region for fat deposition in a region (89 cM) of porcine chromosome 4 (SSC4). To more finely map this QTL region and identify candidate genes for this trait, comparative mapping of pig and human chromosomes was performed in the present study. A region in the human genome that corresponds to the porcine QTL region was identified in HSA1q21. Furthermore, the LMNA gene, which is tightly associated with fat augmentation in humans, was localized to this region. Radiation hybrid (RH) mapping using a Sus scrofa RH panel localized LMNA to a region of 90.3 cM in the porcine genome, distinct from microsatellite marker S0214 (87.3 cM). Two-point analysis showed that LMNA was linked to S0214, SW1996, and S0073 on SSC4 with logarithm (base 10) of odds scores of 20.98, 17.78, and 16.73, respectively. To clone the porcine LMNA gene and to delineate the genomic structure and sequences, including the 3'untranslated region (UTR), rapid amplification of cDNA ends was performed. The coding sequence of porcine LMNA consisted of 1,719 bp, flanked by a 5'UTR and a 3'UTR. Two synonymous single nucleotide polymorphisms (SNPs) were identified in exons 3 and 7. Association tests showed that the SNP located in exon 3 (A193A) was significantly associated with weight at 30 wks (p<0.01) and crude fat content (p<0.05). This association suggests that SNPs located in LMNA could be used for marker-assisted selection in pigs.

Keywords

References

  1. Soltmann, U., J. Raff, and S. Selenska-pobell (2003) Biosorption of heavy metals by sol-gel immobilized Bacillus sphaericus cells, spores and s-layers. J. Sol-gel Sci. Technl. 26: 1209-1212. https://doi.org/10.1023/A:1020768420872
  2. Andersson, L., C. S. Haley, H. Ellegren, S. A. Knott, M. Johansson, K. Andersson, L. Andersson-Eklund, I. Edfors-Lilja, M. Fredholm and I. Hansson. 1994. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science 263:1771. https://doi.org/10.1126/science.8134840
  3. Archibald, A., C. Haley, J. Brown, S. Couperwhite, H. McQueen, D. Nicholson, W. Coppieters, A. Weghe, A. Stratil and A. Wintero. 1995. The PiGMaP consortium linkage map of the pig (Sus scrofa). Mamm. Genome 6:157-175. https://doi.org/10.1007/BF00293008
  4. Boar, W. 1999. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat. Genet. 21:157. https://doi.org/10.1038/5938
  5. Cao, H. and R. A. Hegele. 2000. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum. Mol. Genet. 9:109-112. https://doi.org/10.1093/hmg/9.1.109
  6. Churchill, G. A. and R. W. Doerge. 1994. Empirical threshold values for quantitative trait mapping. Genetics 138:963-971.
  7. De Koning, D., B. Harlizius, A. Rattink, M. Groenen, E. Brascamp and J. Van Arendonk. 2001. Detection and characterization of quantitative trait loci for meat quality traits in pigs. J. Anim. Sci. 79:2812-2819. https://doi.org/10.2527/2001.79112812x
  8. Ellegren, H., B. P. Chowdhary, M. Johansson, L. Marklund, M. Fredholm, I. Gustavsson and L. Andersson. 1994. A primary linkage map of the porcine genome reveals a low rate of genetic recombination. Genetics 137:1089-1100.
  9. Feng, L., H. W. Howard. 1993. Structuaral organizating of the human gene encoding nuclear lamin A and nuclear lamin C. J. Biol. Chem. 268:16321-16326.
  10. Fawcett, D. W. 1966. On the occurrence of a fibrous lamina on the inner aspect of the nuclear envelope in certain cells of vertebrates. Am. J. Anat. 119:129-145. https://doi.org/10.1002/aja.1001190108
  11. Garg, A., M. Vinaitheerthan, P. T. Weatherall and A. M. Bowcock. 2001. Phenotypic heterogeneity in patients with familial partial lipodystrophy (Dunnigan variety) related to the site of missense mutations in lamin A/C gene. J. Clin. Endocrinol. Metab. 86:59-65. https://doi.org/10.1210/jc.86.1.59
  12. Goldman, R. D., D. K. Shumaker, M. R. Erdos, M. Eriksson, A. E. Goldman, L. B. Gordon, Y. Gruenbaum, S. Khuon, M. Mendez and R. Varga. 2004. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc. Natl. Acad. Sci. USA. 101: 8963-8968. https://doi.org/10.1073/pnas.0402943101
  13. Green, P., K. Falls and S. Crooks. 1990. Documentation for CRI-MAP, version 2.4. Washington University School of Medicine, St. Louis, MO.
  14. Grindflek, E., J. Szyda, Z. Liu and S. Lien. 2001. Detection of quantitative trait loci for meat quality in a commercial slaughter pig cross. Mamm. Genome 12:299-304. https://doi.org/10.1007/s003350010278
  15. Hennekes, H. and E. A. Nigg. 1994. The role of isoprenylation in membrane attachment of nuclear lamins. A single point mutation prevents proteolytic cleavage of the lamin A precursor and confers membrane binding properties. J. Cell Sci. 107:1019-1029.
  16. Kim, T. H. 2002. Genetic mapping of quantitative trait loci (QTL) for major economic traits in pig. PhD thesis. Seoul National University. Seoul. Korea.
  17. Knott, S., P. Nyström, L. Andersson‐Eklund, S. Stern, L. Marklund, L. Andersson and C. Haley. 2002. Approaches to interval mapping of QTL in a multigeneration pedigree: the example of porcine chromosome 4. Anim. Genet. 33:26-32. https://doi.org/10.1046/j.1365-2052.2002.00803.x
  18. Knott, S. A. and C. S. Haley. 1992. Aspects of maximum likelihood methods for the mapping of quantitative trait loci in line crosses. Genet. Res. 60:139-151. https://doi.org/10.1017/S0016672300030822
  19. Knott, S. A., L. Marklund, C. S. Haley, K. Andersson, W. Davies, H. Ellegren, M. Fredholm, I. Hansson, B. Hoyheim and K. Lundstrom. 1998. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics 149:1069-1080.
  20. Malek, M., J. C. M. Dekkers, H. K. Lee, T. J. Baas, K. Prusa, E. Huff-Lonergan and M. F. Rothschild. 2001. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. Mamm. Genome 12:637-645. https://doi.org/10.1007/s003350020019
  21. Marklund, L., P. E. Nyström, S. Stern, L. Andersson-Eklund and L. Andersson. 1999. Confirmed quantitative trait loci for fatness and growth on pig chromosome 4. Heredity 82:134-141. https://doi.org/10.1038/sj.hdy.6884630
  22. Morel, C. F., M. A. Thomas, H. Cao, C. H. O'Neil, J. G. Pickering, W. D. Foulkes and R. A. Hegele. 2006. A LMNA splicing mutation in two sisters with severe Dunnigan-type familial partial lipodystrophy type 2. J. Clin. Endocrinol. Metab. 91: 2689-2695. https://doi.org/10.1210/jc.2005-2746
  23. Owen, K. R., M. Donohoe, S. Ellard and A. T. Hattersley. 2003. Response to treatment with rosiglitazone in familial partial lipodystrophy due to a mutation in the LMNA gene. Diabet. Med. 20:823-827. https://doi.org/10.1046/j.1464-5491.2003.01034.x
  24. Quinlan, R., C. Hutchison and B. Lane. 1995. Intermediate filament proteins. Protein Profile 2:795.
  25. Rathje, T. A., G. Rohrer and R. Johnson. 1997. Evidence for quantitative trait loci affecting ovulation rate in pigs. J. Anim. Sci. 75:1486-1494. https://doi.org/10.2527/1997.7561486x
  26. Robic, A., J. Riquet, M. Yerle, D. Milan, Y. Lahbib-Mansais, C. Dubut-Fontana and J. Gellin. 1996. Porcine linkage and cytogenetic maps integrated by regional mapping of 100 microsatellites on somatic cell hybrid panel. Mamm. Genome 7:438-445. https://doi.org/10.1007/s003359900129
  27. Rohrer, G. A., L. J. Alexander, Z. Hu, T. Smith, J. W. Keele and C. W. Beattie. 1996. A comprehensive map of the porcine genome. Genome Res. 6:371-391. https://doi.org/10.1101/gr.6.5.371
  28. Rohrer, G. A., L. J. Alexander, J. W. Keele, T. P. Smith and C. W. Beattie. 1994. A microsatellite linkage map of the porcine genome. Genetics 136:231.
  29. Wagenknecht , D., A. Stratil, H. Bartenschlager, M. Van Poucke, L. J. Peelman, I. Majzlik and H. Geldermann. 2006. SNP identification, linkage and radiation hybrid mapping of the porcine lamin A/C (LMNA) gene to chromosome 4q. J. Anim. Breed. Genet. 123:280-283. https://doi.org/10.1111/j.1439-0388.2006.00591.x
  30. Womack, M., M. C. Festou and S. A. Stern. 1997. The Heliocentric evolution of key species in the distantly-active comet C/1995 O1 (Hale-Bopp). Astron. J. 114:2789-2795. https://doi.org/10.1086/118687