DOI QR코드

DOI QR Code

Neural PID Based MPPT Algorithm for Photovoltaic Generator System

태양광 발전시스템을 위한 신경회로망 PID 기반 MPPT 알고리즘

  • 박지호 (한국전기연구원 전기추진연구본부) ;
  • 조현철 (울산과학대학교 전기전자학부) ;
  • 김동완 (동명대학교 전기공학과)
  • Received : 2012.07.20
  • Accepted : 2012.08.27
  • Published : 2012.09.25

Abstract

Performance of photovoltaic (PV) generator systems relies on its operating conditions. Maximum power extracted from PV generators depends strongly on solar irradiation, load impedance, and ambient temperature. A most maximum power point tracking (MPPT) algorithm is based on a perturb and observe method and an incremental conductance method. It is well known the latter is better in terms of dynamics and tracking characteristics under condition of rapidly changing solar irradiation. However, in case of digital implementation, the latter has some error for determining a maximum power point. This paper presents a PID based MPPT algorithm for such PV systems. We use neural network technique for determining PID parameters by online learning approach. And we construct a boost converter to regulate the output voltage from PV generator system. Computer simulation is carried out to evaluate the proposed MPPT method and we accomplish comparative study with a perturb and observe based MPPT method to prove its superiority.

Keywords

References

  1. 김동완, 박성원, 2010, "에너지절감을 위한 태양광발전설비 연계형 경관조명 전력제어시스템의 개발", Trans. KIEE. Vol. 59P, No. 4.
  2. 김의환, 강승원, 김재언, 2011, "태양광발전시스템의 장기운전에 의한 성능특성 분석", 한국신재생에너지학회지, Vol. 7, No. 2, pp. 28-35.
  3. 박지호, 조현철, 2008, "시변 파라미터 특성을 갖는 유연한 로봇 엑츄에이터의 적응제어", 전기학회논문지, Vol. 57P, No. 3, pp. 250-254.
  4. 신춘식, 안영주, 김동완, 2009, "플라이백 컨버터방법에 의한 태양광발전설비의 납축전지 스위칭모드 전환형 펄스충전기 개발", Trans. KIEE. Vol. 58P, No. 1, pp. 20-26.
  5. 이성훈, 이기욱, 최주엽, 송승호, 최익, 2008, "태양광용 부스트 컨버터의 디지털 전압모드 제어기기 설계", 한국신재생에너지학회 2008년도 추계학술대회 논문집, pp. 94-97.
  6. 조현철, 심광열, 2010, "태양광 발전 시스템을 위한 유비쿼터스 네트워킹 기반 지능형 모니터링 및 고장진단 기술", 대한전기학회 논문지, Vol. 59, No. 9, pp. 1673-1679.
  7. 차경호, 김정택, 2011, "부유식 태양광-파력 복합발전개념 및 원자력발전소 비상전원을 위한 응용", 한국신재생에너지학회지, Vol. 7, No. 4, pp. 37-41.
  8. 황창선, 김문수, 김동완, 심재식, 이경홍, 1994, "신경회로망과 GMDH기법을 이용한 고조파전류의 예측에 관한 연구", Trans. KIEE. Vol. 43, No. 7, pp. 1178-1185.
  9. A. Bahgat, N. Helwab, G. Ahmad, E. Shenawy, 2005, "Maximum power point tracking controller for PV systems using neural networks", Renew. Energy, Vol. 30, pp. 1257-1268. https://doi.org/10.1016/j.renene.2004.09.011
  10. A. Hussein, K. Hirasawa, J. Hu, 2004, "A robust control method for a PV supplied DC motor using universal learning networks", Sol Energy, Vol. 76, pp. 771-780. https://doi.org/10.1016/j.solener.2003.12.011
  11. A. Theodore, F. Ocran, C. Junyi, C. Binggang, S. Xinghua, 2005, "Artificial neural network maximum power point tracker for solar electric vehicle", Singhua Sci Technol, Vol. 10, pp. 204-208. https://doi.org/10.1016/S1007-0214(05)70055-9
  12. C. Hua, and J. Lin, 2003, "An On-line MPPT Algorithm for Rapidly Changing Illuminations of Solar Arrays", Renew. Energy 28, pp. 1129-1142. https://doi.org/10.1016/S0960-1481(02)00214-8
  13. D. W. Kim, S. W. Park. and H. S. Kim, 2011, "Development of Intelligent Landscape Lighting Power Control and Monitoring System with Solar Cell Generator Equipment", Trans. KIEE. Vol. 60P, No. 2.
  14. G. J. Yu, Y. S. Jung, J. Y. Choi, and G. S. Kim, 2004, "A Novel Two-mode MPPT Control Algorithm based on Comparative Study of Existing Algorithms", Sol. Energ, Vol. 76, No. 4, pp. 455-463. https://doi.org/10.1016/j.solener.2003.08.038
  15. H. C. Cho, S. B. Yoo, and K. S. Lee, 2009, "Nonlinera Adaptive Control and Staility Analysis for Improving Transsient Response of Photovoltaic Converter Systems", Joural of institute of Control, Robotics and Systems, Vol. 15, No. 12.
  16. I. Altas, A. Sharaf, 2008, "A novel maximum power fuzzy logic controller for photovoltaic solar energy systems", Renew. Energy, Vol. 33, No. 3, pp. 388-399. https://doi.org/10.1016/j.renene.2007.03.002
  17. N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, 2005, "Optimization of Perturb and Observe Maximum Power Point Tracking Method", IEEE Trans. Power Electron., Vol. 20, No. 4, pp. 963-973. https://doi.org/10.1109/TPEL.2005.850975
  18. N. Patcharaprakiti, S. Premrudeepreech acharn, Y. Sriuthaisiriwong, 2005, "Maximum power point tracking using adaptive fuzzy logic control for grid-connected photovoltaic system", Renew. Energy, Vol. 30, pp. 1771-1788. https://doi.org/10.1016/j.renene.2004.11.018
  19. T. Esram, and P. L. Chapman, 2007, "Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques", IEEE Trans. Energy Convers., Vol. 22, No. 2, pp. 439-449. https://doi.org/10.1109/TEC.2006.874230
  20. V. Salas, E. Olias, A. Barrado, A. Lazaro, 2006, "Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems", Solar Energy Materials & Solar Cells, Vol. 90, pp. 1555-1578. https://doi.org/10.1016/j.solmat.2005.10.023
  21. Y. C. Kuo, T. J. Liang, and J. F. Chen, 2001, "Novel Maximum-power-point Tracking Controller for Photovoltaic Energy Conversion System", IEEE Trans. Ind. Electron., Vol. 48, No. 3, pp. 594-601. https://doi.org/10.1109/41.925586

Cited by

  1. A Study on Fault Detection for Photovoltaic Power Modules using Statistical Comparison Scheme vol.33, pp.4, 2013, https://doi.org/10.7836/kses.2013.33.4.089
  2. Fuzzy adaptive proportional-integral-derivative controller with dynamic set-point adjustment for maximum power point tracking in solar photovoltaic system vol.2, pp.1, 2014, https://doi.org/10.1080/21642583.2014.956267