DOI QR코드

DOI QR Code

SUBTOURNAMENTS ISOMORPHIC TO W5 OF AN INDECOMPOSABLE TOURNAMENT

  • Belkhechine, Houmem (Departement De Mathematiques Institut Preparatoire Aux Etudes D'Ingenieurs De Bizerte Universite De Carthage) ;
  • Boudabbous, Imed (Departement De Mathematiques Institut Preparatoire Aux Etudes D'Ingenieurs De Sfax Universite De Sfax) ;
  • Hzami, Kaouthar (Departement De Mathematiques Faculte Des Sciences De Sfax Universite De Sfax)
  • Received : 2011.06.21
  • Published : 2012.11.01

Abstract

We consider a tournament T = (V,A). For each subset X of V is associated the subtournament T(X) = (X,$A{\cap}(X{\times}X)$) of T induced by X. We say that a tournament T' embeds into a tournament T when T' is isomorphic to a subtournament of T. Otherwise, we say that T omits T'. A subset X of V is a clan of T provided that for a, $b{\in}X$ and $x{\in}V{\backslash}X$, $(a,x){\in}A$ if and only if $(b,x){\in}A$. For example, ${\emptyset}$, $\{x\}(x{\in}V)$ and V are clans of T, called trivial clans. A tournament is indecomposable if all its clans are trivial. In 2003, B. J. Latka characterized the class ${\tau}$ of indecomposable tournaments omitting a certain tournament $W_5$ on 5 vertices. In the case of an indecomposable tournament T, we will study the set $W_5$(T) of vertices $x{\in}V$ for which there exists a subset X of V such that $x{\in}X$ and T(X) is isomorphic to $W_5$. We prove the following: for any indecomposable tournament T, if $T{\notin}{\tau}$, then ${\mid}W_5(T){\mid}{\geq}{\mid}V{\mid}$ -2 and ${\mid}W_5(T){\mid}{\geq}{\mid}V{\mid}$ -1 if ${\mid}V{\mid}$ is even. By giving examples, we also verify that this statement is optimal.

Keywords

References

  1. H. Belkhechine and I. Boudabbous, Tournois indecomposables et leurs soustournois indecomposables a 5 sommets, C. R. Math. Acad. Sci. Paris 343 (2006), no. 11-12, 685-688. https://doi.org/10.1016/j.crma.2006.10.029
  2. H. Belkhechine, I. Boudabbous, and K. Hzami, Sous-tournois isomorphes a $W_{5}$ dans un tournoi indecomposable, C. R. Math. Acad. Sci. Paris 350 (2012), no. 7-8, 333-337. https://doi.org/10.1016/j.crma.2012.03.012
  3. A. Benato and K. Cameron, On an adjacency property of almost all tournaments, Discrete Math. 306 (2006), no. 19-20, 2327-2335. https://doi.org/10.1016/j.disc.2005.12.030
  4. A. Cournier and P. Ille, Minimal indecomposable graphs, Discrete Math. 183 (1998), no. 1-3, 61-80. https://doi.org/10.1016/S0012-365X(97)00077-0
  5. H.-D. Ebbinghaus and J. Flum, Finite Model Theory, Springer Monographs in Mathematics, 1999.
  6. A. Ehrenfeucht and G. Rozenberg, Primitivity is hereditary for 2-structures, Theoret. Comput. Sci. 70 (1990), no. 3, 343-358. https://doi.org/10.1016/0304-3975(90)90131-Z
  7. P. Erdos, E. Fried, A. Hajnal, and C. Milner, Some remarks on simple tournaments, Algebra Universalis 2 (1972), 238-245. https://doi.org/10.1007/BF02945032
  8. R. Fagin, Probabilities on finite models, J. Symbolic Logic 41 (1976), no. 1 50-58. https://doi.org/10.2307/2272945
  9. R. Fagin, Finite-model theory - a personal perspective, Theoret. Comput. Sci. 116 (1993), no. 1, 3-31. https://doi.org/10.1016/0304-3975(93)90218-I
  10. C. Gnanvo and P. Ille, La reconstruction des tournois sans diamants, Z. Math. Logik Grundlag. Math. 38 (1992), no. 3, 283-291. https://doi.org/10.1002/malq.19920380124
  11. P. Ille, Indecomposable graphs, Discrete Math. 173 (1997), no. 1-3, 71-78. https://doi.org/10.1016/S0012-365X(96)00097-0
  12. B. J. Latka, Structure theorem for tournaments omitting $N_{5}$, J. Graph Theory 42 (2003), no. 3, 165-192. https://doi.org/10.1002/jgt.10081
  13. G. Lopez and C. Rozy, Reconstruction of binary relations from their restrictions of cardinality 2, 3, 4 and (n − 1). I, Z. Math. Logik Grundlag. Math. 38 (1992), no. 1, 27-37. https://doi.org/10.1002/malq.19920380104
  14. V. J. Mueller, J. Nesetril, and J. Pelant, Either tournaments or algebras?, Discrete Math. 11 (1975), 37-66. https://doi.org/10.1016/0012-365X(75)90104-1
  15. M. Y. Sayar, Partially critical tournaments and partially critical supports, Contrib. Discrete Math. 6 (2011), no. 1, 52-76.
  16. J. H. Schmerl and W. T. Trotter, Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures, Discrete Math. 113 (1993), no. 1-3, 191-205. https://doi.org/10.1016/0012-365X(93)90516-V