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MOVING FRAMES ON GENERALIZED FINSLER

STRUCTURES

Sorin V. Sabau, Kazuhiro Shibuya, and Hideo Shimada

In memory of Professor Cornel Urs

Abstract. We study the relation between an R-Cartan structure α and
an (I, J,K)-generalized Finsler structure ω on a 3-manifold Σ showing the
difficulty in finding a general transformation that maps α to ω. In some
particular cases, the mapping can be uniquely determined by geometrical
conditions. Moreover, we are led in this way to a negative answer to our
conjecture in [12].

1. Introduction

Let us start by recalling that a Finsler norm on a real smooth, n-dimensional
manifold M is a function F : TM → [0,∞) that is positive and smooth on

T̃M = TM\{0}, has the homogeneity property F (x, λv) = λF (x, v), for all
λ > 0 and all v ∈ TxM , having also the strong convexity property that the
Hessian matrix

gij =
1

2

∂2F 2

∂yi∂yj

is positive definite at any point u = (xi, yi) ∈ T̃M .
The fundamental function F of a Finsler structure (M,F ) determines and it

is determined by the (tangent) indicatrix, or the total space of the unit tangent
bundle of F

ΣF := {u ∈ TM : F (u) = 1},

which is a smooth hypersurface of TM such that at each x ∈ M the indicatrix

at x

Σx := {v ∈ TxM | F (x, v) = 1} = ΣF ∩ TxM

is a smooth, closed, strictly convex hypersurface in TxM .
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A Finsler structure (M,F ) can be therefore regarded as a smooth hypersur-
face Σ ⊂ TM for which the canonical projection π : Σ → M is a surjective sub-
mersion and having the property that for each x ∈ M , the π-fiber Σx = π−1(x)
is strictly convex including the origin Ox ∈ TxM .

A generalization of this notion is the generalized Finsler structure introduced
by R. Bryant (see [4], [5]). We will consider in the following only the low
dimensional case where an (I, J,K)-generalized Finsler structure is a coframing
ω = (ω1, ω2, ω3) on a three dimensional manifold Σ that satisfies the structure
equations

dω1 = −Iω1 ∧ ω3 + ω2 ∧ ω3,

dω2 = −ω1 ∧ ω3,

dω3 = Kω1 ∧ ω2 − Jω1 ∧ ω3.

(1)

Here I, J , K are smooth functions on Σ, called the invariants (in the sense
of equivalence problem) of the generalized Finsler structure (Σ, ω). In order
to put in evidence the invariants, we will use the naming (I, J,K)-generalized
Finsler structure.

The exterior differentials of these equations give the Bianchi type equations

(2) J = Iω2, Kω3 +KI + Jω2 = 0,

where the subscripts denote the directional derivatives with respect to the
coframing ω, i.e., df = fω1ω

1 + fω2ω
2 + fω3ω

3, for any smooth function f on
Σ.

By extension, one can study the generalized Finsler structure (Σ, ω) defined
in this way ignoring even the existence of an underlying surface M .

Let us recall that, for an (I, J,K)-generalized Finsler structure (Σ, ω1, ω2,
ω3), we can always consider

1. P : {ω1 = 0, ω3 = 0} the “geodesic” foliation of Σ, i.e., the leaves are
curves on Σ tangent to ê2;

2. Q : {ω1 = 0, ω2 = 0} the “indicatrix” foliation of Σ, i.e., the leaves are
curves on Σ tangent to ê3,

where {ê1, ê2, ê3} is the dual frame of {ω1, ω2, ω3}.

Any of the codimension two foliations above is called amenable if the leaf
space Λ of the foliation is a smooth surface such that the natural projection
π : Σ → Λ is a smooth submersion.

By extension, an (I, J,K)-generalized Finsler structure (Σ, ω) whose “indica-
trix” foliation Q, “geodesic” foliation P , and “normal” foliation R is amenable,
is called amenable, geodesically amenable and normally amenable, respectively.
Remark that in the case of a Riemannian surface, the foliations P and R co-
incide up to the orientation of the Riemannian volume form, so the notions of
geodesically amenable and normally amenable also coincide. Of course this is
not true anymore in the case Finslerian case ([12] for details).
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The difference between a classical Finsler structure and a generalized one is
global in nature, in the sense that every generalized Finsler surface structure
is locally diffeomorphic to a classical Finsler surface structure (see [4]).

The following fundamental result gives the necessary and sufficient condi-
tions for a generalized Finsler structure to become a classical one.

Theorem 1.1 ([4]). The necessary and sufficient conditions for an (I, J,K)-
generalized Finsler structure (Σ, ω) to be realizable as a classical Finsler struc-

ture on a smooth surface M are

1. the leaves of the indicatrix foliation {ω1 = 0, ω2 = 0} are compact;
2. it is amenable;
3. the canonical immersion ι : Σ → TM , given by ι(u) = π∗,u(ê2), is one-

to-one on each π-fiber Σx, where M is the leaf space of the indicatrix

foliation.

In order to study the differential geometry of a classical Finsler structure
(M,F ), it is customary to construct the pull-back bundle (π∗TM, π,Σ) with
the π-fibers π−1(u) diffeomorphic to TxM , where u = (x, v) ∈ Σ (see [1]). In
general this is not a principal bundle.

By defining an orthonormal moving coframing on π∗TM with respect to the
Riemannian metric on Σ induced by the Finslerian metric F , the moving equa-
tions on this frame lead to the so-called Chern connection. This is an almost
metric compatible, torsion free connection of the vector bundle (π∗TM, π,Σ).

Let us remark that the condition I = 0 imposes J = 0 from Bianchi iden-
tities and therefore the simplest generalized Finsler structure is a (0, 0,K)-
generalized Finsler structure with structure equations

dω1 = ω2 ∧ ω3,

dω2 = −ω1 ∧ ω3,

dω3 = Kω1 ∧ ω2.

(3)

This kind of structure is called a K-Cartan structure on the 3-manifold Σ
(see [7]).

We can conclude that the necessary and sufficient condition for an (I, J,K)-
generalized Finsler structure to be a K-Cartan structure is I = 0.

A K-Cartan structure that satisfies the conditions in Theorem 1.1 gives a
Riemannian structure on the surface M .

A generalization of the geodesic foliation of a K-Cartan structure is also
known (see [4], [5]). Let us suppose that on the 3-manifold Σ endowed with an
amenable K-Cartan structure α, we have a basic one-form β for the fibration
Σ → Λ, where Λ is the leaf space of the foliation {α1 = 0, α2 = 0}. Then,
Pβ : {ω1 = 0, ω3 = β} is called the “β-geodesic” foliation of Σ. Obviously, in
the case β = 0 we get the usual geodesic foliation. The definition can be easily
extended to the non-amenable case as well.
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The geometrical meaning of β geodesics can be thought as follows. Let
us assume that the smooth surface Λ is endowed with a Riemannian structure
whose orthonormal frame bundle is Σ, and whose tautological one-forms α1, α2

together with the Levi-Civita connection form α3 give a coframe on Σ. Then,
a smooth curve γ : [a, b] → Λ is called a β-geodesic if and only if kg = β(γ̇),
where kg is the geodesic curvature of γ and γ̇ is the tangent vector along γ.

Another particular class of special Finsler structures is the one of positive
constant flag curvature K = 1. This leads to the notion of generalized Finsler
structure with K = 1, or, an (I, J, 1)-generalized Finsler structure on the 3-
manifold Σ. The structure equations of a such structure are obtained imme-
diately by simply substituting the curvature condition K = 1 in (1) and (2),
respectively. Many examples of classical Finsler metrics of constant flag cur-
vature are nowadays known, see for example [2] for a complete classification of
constant flag curvature Randers structures, or [13] for other examples.

However, the existence of generalized and classical Finsler structures of con-
stant positive flag curvature K = 1 on surfaces was proved for the first time
by R. Bryant in [4] using a path geometry approach.

We will point out another interesting class of Finsler structures. In order
to do this, let us first recall that, in the case of a classical Finsler structure
(M,F ), the canonical parallel transport Φt : TxM \ 0 → Tσ(t)M \ 0, defined by
the Chern connection along a curve σ on M , is a diffeomorphism that preserves
the Finslerian length of vectors. Unlike the parallel transport on a Riemannian
manifold, Φt is not a linear isometry in general.

This unexpected fact leads to some classes of special Finsler metrics. A
Finsler metric whose parallel transport is a linear isometry is called a Berwald

structure, and one whose parallel transport is only a Riemannian isometry is
called a Landsberg structure.

Equivalently, a Berwald metric is a Finsler metric whose Chern connection
coincides with the Levi Civita connection of a certain Riemannian metric on
M , in other words it is “Riemannian-metrizable”. These are the closest Fins-
lerian metric to the Riemannian ones. The connection is Riemannian, while
the metric is not. However, in the two dimensional case, any Berwald struc-
ture is Riemannian or flat locally Minkowski, i.e., there are no geometrically
interesting Berwald surfaces.

Landsberg structures have the property that the Riemannian volume of the
Finslerian unit ball is a constant. This remarkable property leads to a proof of
Gauss-Bonnet theorem on surfaces [1] and other interesting results.

Obviously, any Berwald structure is a Landsberg one. However, there are no
examples of global Landsberg structures that are not Berwald. The existence
of Landsberg structures that are not Berwald is one of the main open problems
in modern Finsler geometry.

These notions can be easily generalized as follows. A generalized Landsberg

structure on Σ, or an (I, 0,K)-generalized Finsler structure is a generalized
Finsler structure (Σ, ω) such that J = 0, or equivalently, Iω2 = 0. Such a
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generalized structure is characterized by the structure equations

dω1 = −Iω1 ∧ ω3 + ω2 ∧ ω3,

dω2 = −ω1 ∧ ω3,

dω3 = Kω1 ∧ ω2,

(4)

and Bianchi identities

dI = Iω1ω
1 + Iω3ω

3,

dK = Kω1ω
1 +Kω2ω

2 −KIω3,
(5)

where I and K are smooth functions defined on Σ.
A generalized Berwald structure is a generalized Finsler structure character-

ized by the structure equations (4), and

dI ≡ 0 mod ω3,

or, equivalently,

Iω1 = Iω2 = 0, Iω3 6= 0.

By means of Cartan-Kähler theory we have shown in [12] that there exists
non-trivial generalized Landsberg structures on a 3-manifold Σ. Moreover, us-
ing a path geometry approach we have constructed locally a generalized Lands-
berg structure by means of a Riemannian structure on a surface.

The problems we consider in the present paper are:
1. Clarify the relation between Cartan structures and generalized Finsler

structures;
2. For given Cartan and generalized Finsler structures α and ω, respectively,

how many types of regular matrices A exist such that ω = Aα?
3. Give a final answer to the conjecture in [12] on the existence of genuine

Landsberg structures on surfaces via a certain construction.

The essence of the method is to start with an R-Cartan structure α on the
3-manifold Σ and to construct by a coframe changing an (I, J,K)-generalized
Finsler structure {ω1, ω2, ω3} by means of a matrix A = (aij), namely ω = Aα.
By taking the exterior derivative of this formula and imposing conditions such
that the structure equations of the R-Cartan structure and (I, J,K)-generalized
Finsler structure are satisfied, respectively, we obtain a set of differential con-
ditions for the functions aij in terms of its directional derivatives with respect
to the coframe ω. The functions satisfying these conditions can be regarded as
the integral manifolds of a linear Pfaffian system.

Using now Cartan-Kähler theory we can study the existence of the integral
manifolds of this linear Pfaffian system. In the most general case, of course
this problem is quite difficult, but in the some particular cases, for example
an (I, J, 1)-generalized Finsler structure, or, an (I, 0,K)-generalized Finsler
structure (see [4] and [12]) one can construct explicitly the matrix A.

We will show in the following the difficulty of constructing such a matrix A
in the general case (§2), and the simplifications appearing when one imposes
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conditions on the invariants I, J , K and on the indicatrix foliation (§3, §4).
Our conclusion is that subject to some geometrical conditions there are very
many possibilities for the matrix A in the cases K = 1 and J = 0, respectively.

Moreover, a Cartan-Kähler analysis shows that foliation conditions imposed
in §4 determine the form of the Riemannian structure on the manifold Λ (see §4,
§5 for notations). Namely, we ended up with a surface of revolution (Λ, g) whose
unit sphere bundle admits an (I, 0,K)-generalized Finsler structure. This is
the same structure as the one constructed by us in [12]. The present study (§6,
§7) shows that the manifold of geodesics of the Riemannian structure (Λ, g) is
not a smooth manifold, therefore a classical Landsberg structure on a smooth
surface cannot be obtained by this construction, giving in this way a negative
answer to our previous conjecture in [12].

Our findings do not rule out the existence of classical Landsberg structures
on smooth surfaces, but only suggest that a different approach should be chosen.

2. The most general case

Let us assume that we have an R-Cartan structure {α1, α2, α3} on a 3-
manifold Σ and an (I, J,K)-structure {ω1, ω2, ω3} on a 3-manifold Σ′. We are
concerned with the problem of the existence of the linear transformation

A : T ∗Σ → T ∗Σ′

given by ω = Aα. Without loss of generality we can assume that there is a
diffeomorphism ϕ : Σ′ → Σ and that A is the matrix of the cotangent map ϕ∗.
Therefore, formally, we identify the manifolds Σ′ and Σ.

In components, we have

(6)



ω1

ω2

ω3


 =



a11 a12 a13
a21 a22 a23
a31 a32 a33






α1

α2

α3


 ,

where the elements aij of the matrix A are smooth functions on the 3-manifold
Σ. Recall that an R-Cartan structure has the structure equations (3) with the
structure function R.

One can easily see that ω1 ∧ ω2 ∧ ω3 = det(A) α1 ∧ α2 ∧ α3.
By taking the exterior derivative of (6), it follows

(7) d



ω1

ω2

ω3


 = dA ∧



α1

α2

α3


+Ad



α1

α2

α3


 .

Using now the structure equations of the (I, J, K)-structure ω and relation
(6), we can express the left hand side of (7), with respect to the coframe α, as
follows

dω1 = (−IA23 +A13)α
1 ∧ α2 + (−IA22 +A12)α

1 ∧ α3(8)

+ (−IA21 +A11)α
2 ∧ α3,
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dω2 = −A23α
1 ∧ α2 −A22α

1 ∧ α3 −A21α
2 ∧ α3,

dω3 = (KA33 − JA23)α
1 ∧ α2 + (KA32 − JA22)α

1 ∧ α3

+ (KA31 − JA21)α
2 ∧ α3,

where Aij is the minor of the element aij in the matrix A, for all i, j = 1, 2, 3,
namely A11 = a22a33 − a23a32, A12 = a21a33 − a23a31, etc.

If we denote the directional derivatives with respect to the coframe α by
subscripts, namely df = f1α

1 + f2α
2 + f3α

3, for any smooth function f on Σ,
and daij = aij·1α

1 + aij·2α
2 + aij·3α

3 for matrices, then from (7) and (8), we
obtain the relations





a11·2 = a12·1 + a13R+ IA23 −A13,

a21·2 = a22·1 + a23R+A23,

a31·2 = a32·1 + a33R−KA33 + JA23,




a13·1 = a11·3 + a12 − IA22 +A12,

a23·1 = a21·3 + a22 −A22,

a33·1 = a31·3 + a32 +KA32 − JA22,




a12·3 = a13·2 + a11 + IA21 −A11,

a22·3 = a23·2 + a21 +A21,

a32·3 = a33·2 + a31 −KA31 + JA21.

(9)

Next, we will express the system of directional PDEs (9), with respect to the
coframe α, using exterior differential systems (see for example [11] for details).
Let us formally construct the following one forms:





θ11 = d(a11)− a11·1α
1 − (a12·1 + B112)α

2 − a11·3α
3,

θ21 = d(a21)− a21·1α
1 − (a22·1 + B212)α

2 − a21·3α
3,

θ31 = d(a31)− a31·1α
1 − (a32·1 + B312)α

2 − a31·3α
3,





θ12 = d(a12)− a12·1α
1 − a12·2α

2 − (a13·2 +B123)α
3,

θ22 = d(a22)− a22·1α
1 − a22·2α

2 − (a23·2 +B223)α
3,

θ32 = d(a32)− a32·1α
1 − a32·2α

2 − (a33·2 +B323)α
3,





θ13 = d(a13)− (a11·3 +B131)α
1 − a13·2α

2 − a13·3α
3,

θ23 = d(a23)− (a21·3 +B231)α
1 − a23·2α

2 − a23·3α
3,

θ33 = d(a33)− (a31·3 +B331)α
1 − a33·2α

2 − a33·3α
3,

(10)

where we use the notations

B112 := a13R+IA23−A13, B212 := a23R+A23, B312 := a33R−KA33+ JA23,

B123 := a11 + IA21 −A11, B223 := a21 +A21, B323 := a31 −KA31 + JA21,

B131 := a12 − IA22 +A12, B231 := a22 −A22, B331 := a32 +KA32 − JA22.
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We can now formulate our setting as follows. Consider the jet space

(x, y, p; aij ; aij·k)i,j,k∈{1,2,3} ∈ J1(3, 9) = Σ3 × R
9 × R

27,

where (x, y, p) are some local coordinates on Σ. Next, we consider the codi-

mension 9 submanifold Σ̃30 of J1(3, 9) defined by the equations (9), then we
can take the local coordinates

(x, y, p; aij ; āij·k)i,j,k∈{1,2,3} ∈ Σ̃30 = Σ3 × R
9 × R

18,

where āij·k means all aij·k for i, j, k ∈ {1, 2, 3} less the terms in the left hand
side of (9).

Let us consider the Pfaffian system

(11) I := {θij}i,j,k∈{1,2,3} ⊂ J := {θij ;α
1, α2, α3}i,j,k∈{1,2,3} ⊂ T ∗Σ̃

with independence condition α1 ∧ α2 ∧ α3 6= 0, where the one forms θij are
given in (10).

The integral manifolds of the linear Pfaffian system (I,J ) are the elements
of the matrix A.

Therefore, we are going to study the existence of integral manifolds of the
linear Pfaffian system (I,J ) defined above.

We start by computing exterior differentials of the one forms θij :

dθ11 =− d(a11·1) ∧ α1 − d(a12·1) ∧ α2 − d(a11·3) ∧ α3

− (a11·1 −B112·3)α
2 ∧ α3 − (a12·1 +B112)α

3 ∧ α1

− (a11·3R+B112·1)α
1 ∧ α2.

It follows

(12) dθ11 = Π111 ∧ α1 +Π121 ∧ α2 +Π113 ∧ α3,

where

Π111 :=− d(a11·1)− (a12·1 +B112)α
3 + (a11·3R+B112·1)α

2,

Π121 :=− d(a12·1),

Π113 :=− d(a11·3)− (a11·1 −B112·3)α
2.

(13)

In the same way, we obtain

(14) dθ21 = Π211 ∧ α1 +Π221 ∧ α2 +Π213 ∧ α3,

where

Π211 :=− d(a21·1)− (a22·1 +B212)α
3 + (a21·3R+B212·1)α

2,

Π221 :=− d(a22·1),

Π213 :=− d(a21·3)− (a21·1 −B212·3)α
2,

(15)

and

(16) dθ31 = Π311 ∧ α1 +Π321 ∧ α2 +Π313 ∧ α3,
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where

Π311 :=− d(a31·1)− (a32·1 +B312)α
3 + (a31·3R+B312·1)α

2,

Π321 :=− d(a32·1),

Π313 :=− d(a31·3)− (a31·1 −B312·3)α
2.

(17)

Therefore, we conclude

(18)





dθ11 = Π111 ∧ α1 +Π121 ∧ α2 +Π113 ∧ α3,

dθ21 = Π211 ∧ α1 +Π221 ∧ α2 +Π213 ∧ α3,

dθ31 = Π311 ∧ α1 +Π321 ∧ α2 +Π313 ∧ α3.

We move now to the second group of θ’s and by similar computations we
conclude

(19)





dθ12 = Π121 ∧ α1 +Π122 ∧ α2 +Π132 ∧ α3,

dθ22 = Π221 ∧ α1 +Π222 ∧ α2 +Π232 ∧ α3,

dθ32 = Π321 ∧ α1 +Π322 ∧ α2 +Π332 ∧ α3,

where Π121, Π221, Π321 are given above, and

Π122 := −d(a12·2) + (a12·1 +B123·2)α
3 − (a13·2 +B123)Rα1,

Π132 := −d(a13·2) + (a12·2 −B123·1)α
1,

Π222 := −d(a22·2) + (a22·1 +B223·2)α
3 − (a23·2 +B223)Rα1,

Π232 := −d(a23·2) + (a22·2 −B223·1)α
1,

Π322 := −d(a32·2) + (a32·1 +B323·2)α
3 − (a33·2 +B323)Rα1,

Π332 := −d(a33·2) + (a32·2 −B323·1)α
1.

(20)

Finally, we consider the third group of θ’s and obtain:

(21)





dθ13 = Π113α
1 +Π132α

2 +Π133α
3 + T13α

1 ∧ α2,

dθ23 = Π213α
1 +Π232α

2 +Π233α
3 + T23α

1 ∧ α2,

dθ33 = Π313α
1 +Π332α

2 +Π333α
3 + T33α

1 ∧ α2,

where Π113, Π132, Π213, Π232, Π313, Π332 are given above, and

Π133 := −d(a13·3)− (a11·3 +B131)α
2 + (a13·2 +B131·3)α

1,

Π233 := −d(a23·3)− (a21·3 +B231)α
2 + (a23·2 +B231·3)α

1,

Π333 := −d(a33·3)− (a31·3 +B331)α
2 + (a33·2 +B331·3)α

1,

T13 := −(a11·1 −B112·3)− (a12·2 −B123·1)− (a13·3R−B131·2),

T23 := −(a21·1 −B212·3)− (a22·2 −B223·1)− (a23·3R−B231·2),

T33 := −(a31·1 −B312·3)− (a32·2 −B323·1)− (a33·3R−B331·2).

(22)
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Putting all these together, we get the θ’s structure equations




dθ11 = Π111 ∧ α1 +Π121 ∧ α2 +Π113 ∧ α3,

dθ12 = Π121 ∧ α1 +Π122 ∧ α2 +Π132 ∧ α3,

dθ13 = Π113 ∧ α1 +Π132 ∧ α2 +Π133 ∧ α3 + T13α
1 ∧ α2,





dθ21 = Π211 ∧ α1 +Π221 ∧ α2 +Π213 ∧ α3,

dθ22 = Π221 ∧ α1 +Π222 ∧ α2 +Π232 ∧ α3,

dθ23 = Π213 ∧ α1 +Π232 ∧ α2 +Π233 ∧ α3 + T23α
1 ∧ α2,





dθ31 = Π311 ∧ α1 +Π321 ∧ α2 +Π313 ∧ α3,

dθ32 = Π321 ∧ α1 +Π322 ∧ α2 +Π332 ∧ α3,

dθ33 = Π313 ∧ α1 +Π332 ∧ α2 +Π333 ∧ α3,+T33α
1 ∧ α2.

(23)

The torsion terms are

T13 = − (A13·3 +A11·1 −A12·2) + I(A23·3 +A21·1 −A22·2)

+ (I1A21 − I2A22 + I3A23),

T23 = A23·3 +A21·1 −A22·2,

T33 = −K(A33·3 +A31·1 −A32·2) + J(A23·3 +A21·1 −A22·2)

− (K1A31 −K2A32 +K3A33) + (J1A21 − J2A22 + J3A23),

(24)

where we have used that R3 = 0.

Remark 2.1. Indeed, since {α1, α2, α3} is an R-Cartan structure, from the last
structure equation dα3 = Rα1 ∧ α2, we get d2α3 = R3α

1 ∧ α2 ∧ α3 = 0. Since
the volume form α1 ∧ α2 ∧ α3 does not vanish it follows R3 = 0.

We can therefore conclude:

Theorem 2.1. For a given R-Cartan structure (Σ, α) and an (I, J,K)-struc-
ture (Σ, ω), let A : T ∗Σ → T ∗Σ be the linear transformation whose matrix

elements (aij) are solutions of the PDE (9). Let (I,J ) = (θij , αi) be the

corresponding Pfaffian system on the 30 dimensional manifold Σ̃. Then, (I,J )
has non absorbable torsion, namely T13, T23, T33 given by (24).

We remark here that

(25) T13 = 0, T23 = 0, T33 = 0

is the necessary condition for the Pfaffian system (I,J ) to have solution. Fol-
lowing Cartan-Kähler algorithm (see for example [11]), we should restrict the
Pfaffian system to the submanifold

Ξ := {u ∈ Σ̃ | T13(u) = 0, T23(u) = 0, T33(u) = 0} ⊂ Σ̃

and compute again the torsion. However, the (25) is a very complicated nonlin-
ear directional PDE, and even after restriction to Ξ, new non-vanishing torsions
are expected to appear, so the problem is not tractable in this general case.
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Therefore, we will consider in the following some particular cases when by
putting some geometrical conditions we can actually decide the existence of
such a linear transformation between cotangent spaces.

3. The case K = 1

We consider now the similar problem of an a-priori given R-Cartan struc-
ture α and an (I, J, 1)-structure ω on the same 3-manifold Σ. We are again
concerned with the problem of the existence of the linear transformation A :
T ∗Σ → T ∗Σ such that ω = Aα. Recall that in this case (I, J, 1)-generalized
Finsler structure has the structure equations

dω1 = −Iω1 ∧ ω3 + ω2 ∧ ω3,

dω2 = −ω1 ∧ ω3,

dω3 = ω1 ∧ ω2 − Jω1 ∧ ω3,

(26)

and the Bianchi identities

(27) J = Iω2, I + Jω2 = 0,

where the covariant derivatives are with respect to the (I, J, 1)-structure (Σ, ω).
Let us remark that the most important feature of the case K = 1 is the

invariance of the two forms ω1 ∧ ω3 and (ω1)2 + (ω3)2 under the flow of ê2.
Indeed, a straightforward computation shows that

Lê2 [(ω
1)2 + (ω3)2] = 0, Lê2 (ω

1 ∧ ω3) = 0,

Lê2(Iω
1 + Jω3) = 0, Lê2 (I

2 + J2) = 0.
(28)

The geometrical meaning of these relations is quite clear.
If U ⊂ Σ is an open set where the geodesic foliation {ω1 = 0, ω3 = 0}

is amenable (this is always possible locally), i.e., ΛU := U/{ω1=0,ω3=0} is a
differential manifold and lU : U → ΛU is a smooth submersion, then there exist

(1) a quadratic form dσ2 on ΛU such that l∗U (dσ
2) = (ω1)2 + (ω3)2;

(2) a two form Ω on ΛU such that l∗U (Ω) = ω1 ∧ ω3;
(3) a one form β on ΛU such that l∗U (β) = Iω1 + Jω3.

The indicatrix foliation of this Riemannian structure coincides with the ge-
odesic foliation of the (I, J, 1)-structure.

In particular, if the (I, J, 1)-structure (Σ, ω) is geodesically amenable, i.e.,
Λ := Σ/{ω1=0,ω3=0} is a differential manifold and l : Σ → Λ is a smooth
submersion, then on Λ there exist a canonical Riemannian metric g, with area
form Ω and a one form β whose norm with respect to the Riemannian metric
g is I2 + J2.

On the other hand, we have given an R-Cartan structure (Σ, α) on the
same manifold Σ whose indicatrix foliation is {α1 = 0, α2 = 0}. Locally,
if V is a small neighborhood on Σ, where this foliation is amenable, then
ΛV := V/{α1=0,α2=0} is a differential manifold and lV : V → ΛV is a smooth
submersion. Moreover, ΛV is naturally endowed with
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(1) a quadratic form dσ̄2 , such that l∗V (dσ̄
2) = (α1)2 + (α2)2;

(2) a two form Ω̄, such that l∗V (Ω̄) = α1 ∧ α2.

In the case when the Cartan structure (Σ, α) is amenable, Λ̄ :=Σ/{α1=0,α2=0}

is a differential manifold and l̄ : Σ → Λ̄ is a smooth submersion and on Λ̄ there
exists a canonical Riemannian metric ḡ, with area form Ω̄.

Due to all these it is natural to impose the following:

Foliation Condition: The (I, J, 1)-structure’s geodesic foliation {ω1 = 0,
ω3 = 0} coincides to the indicatrix foliation of the given R-Cartan structure

{α1 = 0, α2 = 0}.

This condition has the following natural:

Corollary 3.1. The (I, J, 1)-structure (Σ, ω) is geodesically amenable if and

only if the R-Cartan structure (Σ, α) is amenable.

Hereafter we consider the case of an R-Cartan structure (Σ, ω) and an
(I, J, 1)-structure (Σ, α) under the above foliation condition. In terms of the
transformation A : T ∗Σ → T ∗Σ, this implies a13 = 0, a33 = 0, therefore we
have

(29)



ω1

ω2

ω3


 =



a11 a12 0
a21 a22 a23
a31 a32 0






α1

α2

α3


 .

Another useful geometrical remark is that, in the case when (Σ, ω) is geodesi-
cally amenable, or, equivalently, (Σ, α) is amenable, on the 2-manifold Λ =
Σ/{ω1=0,ω3=0} = Σ/{α1=0,α2=0} we have actually two different quadratic forms

dσ2 and dσ̄2 such that l∗(dσ2) = (ω1)2 + (ω3)2 and l∗(dσ̄2) = (α1)2 + (α2)2,
respectively. In the case of amenability, they induce two different Riemannian
metrics on the 2-manifold Λ.

A natural choice is given by the following choice:

Identification Condition: The Cartan structure {ω1, ω3} coincides with the

Cartan structure {α1, α2}, namely,

(30) ω1 = α1 ω3 = α2.

In this case, we obtain the coframe changing


ω1

ω2

ω3


 =




1 0 0
a21 a22 a23
0 1 0






α1

α2

α3


 ,

and from the linear independence condition of the one forms α and ω, namely,

ω1 ∧ ω2 ∧ ω3 = −a23 α1 ∧ α2 ∧ α3 6= 0

it follows a23 6= 0.
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The first structure equation of (26) implies now

a23 = −1, a21 = I.

The third structure equation of (26) implies further

a22 = J,

so we obtain the coframe changing

(31)



ω1

ω2

ω3


 =



1 0 0
I J −1
0 1 0






α1

α2

α3


 .

Similarly, the second structure equation in (26) leads us to the condition

(32) R = −I2 + J1 + 1,

where the subscripts denote directional derivative with respect to the coframe
α, or, equivalently,

R = −(J2 + Iω3) + Jω1 − I2 + 1.

Hence, we can conclude:

Proposition 3.2. Let α and ω be an R-Cartan and an (I, J, 1)-generalized
Finsler structure on the 3-manifold Σ, respectively. Then, there is a unique

linear transformation A : T ∗Σ → T ∗Σ, such that ω = Aα, subject to the

foliation and identification conditions above. The matrix of A in the coframes

ω and α is given in (31). In this case, the R-Cartan structure must obey the

condition (32).

Remark. Since we are in two dimensions and amenability assumed, these Rie-
mannian metrics must be conformal, and therefore their tautological forms
{α1, α2} and {ω1, ω3} must be conformal as well, respectively. Here we regard
the one forms {ω1, ω3} and {α1, α2} as the tautological one forms of the corre-
sponding Riemannian structures on the same 3-manifold Σ, respectively, up to
a local diffeomorphism. Indeed, the orthogonal frame bundles of the Riemann-
ian structures (Λ, g) and (Λ, ḡ) are different, but it is always possible to define
local diffeomorphisms between Σ and the total spaces of these orthonormal
frame bundles (see [12] for details).

Therefore, without loss of generality, we can always assume the following:

Conformal Equivalence:

(33)

(
ω1

ω3

)
= m

(
α1

α2

)
,

where m is a positive function defined on Σ. From the structure equations of
the R-Cartan structure it follows immediately that m3 = 0.

Let us point out this conformal equivalence holds in the non-amenable case
as well. Indeed, it can be seen from the structure equations of the (I, J, 1)-
structure that {ω1, ω3} is a Cartan structure as well (pay attention to the fact
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that the third one form of this Cartan structure is different from ω2). In this
case, under the foliation condition, the induced quadratic forms live on the
2-orbifold Λ defined similarly as in the amenable case. In this case relation
(33) simply says that the two Cartan structures {ω1, ω3} and {α1, α2} belong
to the same conformal class of Cartan structures (see [7] for details).

Remark. One can also easily see that for a smooth function v : Σ → R, if
{α1, α2, α3} is an R-Cartan structure Σ, and v a nowhere zero function, then

{vα1, vα2, α̃3} is an R̃-Cartan structure, where

(34) α̃3 := α3 − ∗d(log v), v2R̃ = R −∆α(log v),

provided v3 = 0. Here ∗ and ∆α are the Hodge operator and the Laplacian of
the Cartan structure (α1, α2), namely

(35) ∗d(log v) = −
v2
v
α1 +

v1
v
α2, ∆α(log v) =

1

v2

[
(v11 + v22)v − (v21 + v22)

]
.

The conformal class of an R-Cartan structure {α1, α2, α3} is the collection
of all coframes {vα1, vα2, α̃3}, where v is a smooth positive function on Σ
provided v3 = 0.

Therefore, we obtain

(36)



ω1

ω2

ω3


 =




m 0 0
a21 a22 a23
0 m 0






α1

α2

α3


 ,

and hence

ω1 ∧ ω2 ∧ ω3 = −m2a23 α1 ∧ α2 ∧ α3.

The first structure equation of the (I, J, 1)-structure gives

m3 = 0,

a23 = −1,

a21 = (−m2 + Im2)/m.

(37)

Remark that first relation was also obtained from geometrical considerations
above as well. In this case, we obtain



ω1

ω2

ω3


 =




m 0 0
−m2

m + Im a22 −1
0 m 0






α1

α2

α3


 .

The third structure equation of ω implies

(38) a22 = Jm+
m1

m
,

and therefore we obtain

(39)



ω1

ω2

ω3


 =




m 0 0
−m2

m + Im m1

m + Jm −1
0 m 0






α1

α2

α3


 .
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Remark that we can also write formally

ω2 = ϕ+ ∗d logm− α3,

where we put ϕ := m(Iα1 + Jα2). The Hodge operator has the usual form
∗d logm = −m2

m α1 + m1

m α2.
The second structure equation (26) leads us to the following structure equa-

tion

(40) dϕ = (R −m2)α1 ∧ α2 − d(∗d logm).

We can conclude:

Theorem 3.3. Let α and ω be an R-Cartan and an (I, J, 1)-generalized Finsler

structure on the 3-manifold Σ, respectively, such that the contact one-forms

ω1, ω3 belong to the conformal class of Cartan structure α. Then, the linear

transformation A : T ∗Σ → T ∗Σ, such that ω = Aα, subject to the Foliation

condition, is given by (39), where m is the conformal factor.

Moreover, the structure function R has to satisfy

(41) Rα1 ∧ α2 = dϕ+m2α1 ∧ α2 + d(∗d logm)

for the one form ϕ = m(Iα1 + Jα2).

Let us remark that the indicatrix foliation of the (I, J, 1)-structure (Σ, ω)
coincides with the (ϕ + ∗d logm)-geodesic foliation of the Cartan structure
(Σ, α).

We can ask:

Projective Condition: The indicatrix foliation of the (I, J, 1)-structure (Σ, ω)
coincides with the geodesic foliation of the Cartan structure (Σ, α).

This implies that we must have

ϕ = − ∗ d logm,

i.e., the invariants of the (I, J, 1)-structure (Σ, ω) are uniquely determined by
the conformal factor m, namely,

I =
m2

m2
, J = −

m1

m2
.

With this extra condition, the structure equation (40) reads

dϕ = −m2α1 ∧ α2 + dα3 − d ∗ d logm,

or, equivalently

dα3 = m2α1 ∧ α2,

in other words, we must have m2 = R.
Therefore we have:
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Proposition 3.4. Let α be an R-Cartan structure, R > 0 on the 3-manifold Σ.
Then there is only one (I, J, 1)-generalized Finsler structure on Σ that satisfies

the Foliation and the Projective conditions above, namely the one given in

(39), where m = ±
√
R is the conformal factor. Its invariants are uniquely

determined only by the structure function R, namely

(42) I =
1

2

R2

R3/2
, J = −

1

2

R1

R3/2
.

Let us recall that a Riemannian metric g on a smooth manifold Λ is called
a Zoll metric if all its geodesics are simple closed curves of equal length. See
[3] for basics of Zoll metrics as well as [10] for the abundance of Zoll metrics
on S2.

One is led in this way to the following construction method of classical
Finsler structures with K = 1 in S2 found in [5].

Proposition 3.5. Let (S2, g) be a Zoll metric of positive curvature R and let

α1, α2 be the tautological one-forms, α3 the Levi-Civita connection one-form

on the orthonormal sphere bundle Σ of this Riemannian metric. Then the

(I, J, 1)-generalized Finsler structure given in Proposition 3.4 above gives rise

to a classical Finsler structure on the manifold of geodesics of g.

Proof. The proof is straightforward by construction. �

4. The case J = 0

We are concerned in this section with the problem of the existence of the
linear transformation A : T ∗Σ → T ∗Σ such that ω = Aα, where α and ω are
an R-Cartan structure and an (I, 0,K)-generalized Finsler structure on the
same 3-manifold Σ, respectively. Recall that structure equations and Bianchi
identities for ω were already given in Introduction by (4) and (5), respectively.

One can see that it is impossible to extract any two one forms from the
coframe ω to obtain a Cartan structure as we did in the previous case.

Since all forms in the coframe ω are contact forms in this case, the best thing
to do is to choose an equivalent contact form from the same contact forms class.
Namely, we can choose any of the following pairs of contact forms

(43)

(
mω2

ω3

)
or

(
ω2

mω3

)
,

where m is some smooth nowhere vanishing function on Σ. More conditions
will come up later.

Any of these work, but here we choose the first one.
One can easily see that with a supplementary condition on m, the quadratic

form (mω2)2 + (ω3)2 is invariant under the flow of ê1. Indeed,

Lê1 ((mω2)2 + (ω3)2) = 2
[
mmω1(ω

2)2 + (m2 −K)ω2ω3
]
.

Therefore, we get:
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Lemma 4.1. Let m be a smooth non-vanishing function on Σ satisfying

(44) mω1 = 0 m2 = K.

Then Lê1 ((mω2)2 + (ω3)2) = 0.

Moreover, we have:

Lemma 4.2. Under the conditions (44) the pair of contact one forms

η1 := mω2, η2 := ω3, η3 := mω1 +mω3ω
2

is an R-Cartan structure on Σ with the structure function R = 1− mω33

m .

Let us return to our initial setting and denote again the coframe changing
by

(45)




ω1

mω2

ω3


 =



a11 a12 a13
a21 a22 a23
a31 a32 a33






α1

α2

α3


 ,

where α and ω are arbitrary a priori given.
Similar to the case K = 1 all these suggest that we can put the following:

Foliation Condition: Finslerian indicatrix foliation {ω1 = 0, ω2 = 0} coin-

cides with the geodesic foliation {α1 = 0, α3 = 0} of the R-Cartan structure

(Σ, α) (see also [12]).

This foliation condition implies that the matrix A reads now

(46) A =



a11 a12 a13
a21 a22 0
a31 a32 0


 .

We can now consider again:

Identification Condition: The Cartan structure {mω2, ω3} coincides with

the R-Cartan structure {α1, α2}, i.e.,

α1 = mω2, α2 = ω3,

provided (44) is satisfied.

In this case, we have

(47)



ω1

ω2

ω3


 =



a11 a12 a13
1
m 0 0
0 1 0






α1

α2

α3


 .

Writing down the second and third structure equations (4) we are immedi-
ately lead to the supplementary conditions

a12 = 0, a13 =
1

m
,

and

a11 =
( 1

m

)
2
.
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We therefore obtain the coframe change

(48)



ω1

ω2

ω3


 =




(
1
m

)
2

0 1
m

1
m 0 0
0 1 0






α1

α2

α3


 .

This is the same coframe changing as in [12]. The first structure equation
in (4) leads to

(49) I = −2
m2

m
, R = 1−

m22

m
.

Let us point out that the Landsberg condition Iω2 = 0 is equivalent to
m12 = 0.

We also remark that the indicatrix foliation {ω1 = 0, ω2 = 0} of the (I, 0,K)-
structure (Σ, ω) coincides with the geodesic foliation {α1 = 0, α3 = 0} of the
R-Cartan structure (Σ, α) by construction.

Therefore, we can conclude:

Proposition 4.3. Let α and ω be an R-Cartan and an (I, 0,K)-generalized
Finsler structure on the 3-manifold Σ, respectively. Then, there is a unique

linear transformation A : T ∗Σ → T ∗Σ, such that ω = Aα, subject to the

Foliation and Identification conditions above. The matrix of A in the coframes

ω and α is given in (48). In this case, the R-Cartan structure must obey the

condition

(50) R = 1−
m22

m
,

where m is a non-vanishing smooth function on Σ such that

(51) m3 = 0, m12 = 0.

In this case, the invariants of ω are

(52) I = −2
m2

m
, K = m2.

We remark that under the foliation and identification conditions, the struc-
ture functions I, K of (Σ, ω) as well as the structure function R of (Σ, α) are
uniquely determined by the function m that has to satisfy the PDE (51). In
other words, we may say that for given m solution of (51), the (1−m22

m )-Cartan

structure α and (−2m2

m , 0,m2)-structure ω structures are uniquely determined
by m.

The involutivity of the PDE made of relations in Proposition 4.3 can now
be investigated by means of Cartan-Kähler Theorem.

Let us point out that our formula m12 = 0 shows that the function m1 is
invariant under the “geodesic” flow of (Σ, α). In other words, the function m1

descends on the leaf space Σ/{α1=0,α3=0}.
We remark also that locally we can relax a little the identification condition

by asking the conformal equivalence of these two Cartan structures, namely:
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Conformal Equivalence: There exists a positive smooth function f on Σ,
satisfying f3 = 0, such that

(
mω2

ω3

)
= f

(
α1

α2

)
.

It follows

(53)



ω1

ω2

ω3


 =



a11 a12 a13
f
m 0 0
0 f 0






α1

α2

α3


 .

We will investigate now supplementary conditions for the remaining aij such
that (Σ, α) and (Σ, ω) are Cartan and (I, 0,K)-structure, respectively.

The structure equation dω2 = ω3 ∧ ω1 leads to

fa11 =
( f

m

)
2
,

fa13 =
f

m
,

( f

m

)
3
= 0.

(54)

From here it follows that a11 and a13 can be written in terms of f and m
only, namely

(55) a11 =
1

f

( f

m

)
2
=

f2m− fm2

fm2
, a13 =

1

m
.

The structure equation dω3 = Kω1 ∧ ω2 leads to

(56) a12fm = −f1, f3 = 0,

and from here we get a12 in terms of f and m. Also, by combining with (54)
we obtain m3 = 0. It can be seen that this condition is consistent with m1 = 0
obtained already.

With all these we obtain the final form of the coframing change

(57)



ω1

ω2

ω3


 =




1
f

(
f
m

)
2

− f1
fm

1
m

f
m 0 0
0 f 0






α1

α2

α3


 .

It follows that the Bianchi equation Kω3 +KI = 0 implies

I = −
Kω3

K
= −2

m2

fm
.

After some long but not complicated computations, we get that Iω2 = 0 is
equivalent to the following Landsberg Condition:

(58) m21 =
f1m2 + f2m1

f
.
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The remaining structure equation dω1 = −Iω1 ∧ ω3 + ω2 ∧ ω3 leads now to

−
( 1

f

( f

m

)
2

)
2
−
( f1
fm

)
1
+

1

m
R = −I

( f

m

)
2
+

f2

m
,

1

f

( f

m

)
2
+
( f1
fm

)
3
+
( 1

m

)
2
= I

f

m
,

( 1

m

)
1
+

f1
fm

−
( 1

f

( f

m

)
2

)
3
= 0.

(59)

It can be seen that the second and third relations are identities. However first
relation leads to second order directional PDE for f in terms of the curvature R
that should be considered together with the Landsberg condition (58). Indeed,
by straightforward computation we get the curvature condition:

(60) R− f2 =
f11 + f22

f
−

f2
1 + f2

2

f2
−

f1m1 − f2m2

fm
−

m22

m
.

We can conclude:

Proposition 4.4. Let (Σ, α) and (Σ, ω) be an R-Cartan structure and an

(I, 0,K)-structure on the 3-manifold Σ, respectively. Let also m and f be two

smooth functions on Σ such that they are invariant under the flow of ê1 and the

conditions (58) and (60) are verified. Then, the matrix A given in (57) gives a
coframing change between the R-Cartan structure α and the (I, 0,K)-structure
ω.

It can be shown by the means of Cartan-Kähler theorem that the differential
system (58), (60) it is involutive (see [12] for similar discussions), but the
computations are too complicated to be given here.

5. Cartan-Kähler Theory for an (I, 0, K)-generalized Finsler
structure

Let us consider here the problem of involutivity of the PDEs (50), (51) for
an unknown function m on the 3-dimensional manifold Σ.

In order to keep things simple, our setting is a 3-manifold Σ endowed with
an R-Cartan structure {α1, α2, α3}. All the subscripts of the scalars are again
with respect to the coframe α.

Let us observe that for any function f on Σ equipped with an R-Cartan
structure, the following Ricci identities hold:

f1 + f32 − f23 = 0,

f2 + f13 − f31 = 0,

Rf3 + f21 − f12 = 0.

(61)
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In particular, from Bianchi identity R3 = 0 (see Remark 2.1) we have

R1 −R23 = 0,

R2 +R13 = 0,

R21 −R12 = 0.

(62)

We start by considering the following one forms

θ1 = dm−m1α
1 −m2α

2,

θ2 = dm1 −m11α
1 +m2α

3,

θ3 = dm2 − (1−R)mα2 −m1α
3,

(63)

namely, for a given R-Cartan structure {α1, α2, α3} on the 3-manifold Σ, we
consider PDEs (50), (51) and Ricci identities m13 = −m2,m21 = 0,m23 = m1.

Next, let us consider the linear Pfaffian (I,J ) with independence condition

I = {θ1, θ2, θ3},

J = {α1, α2, α3, θ1, θ2, θ3},

α1 ∧ α2 ∧ α3 6= 0

(64)

on the 7-dimensional manifold Ω with the coframing

(65) {α1, α2, α3, dm, dm1, dm2, dm11}.

The integral manifolds of (I,J ) are functions m with the desired proprieties
for given R-Cartan structure.

A straightforward computation shows that (I,J ) has non-absorbable torsion
given by

dθ1 ≡ 0,

dθ2 ≡ (−dm11 −m2Rα2) ∧ α1 + t2α
2 ∧ α3, mod θ1, θ2, θ3,

dθ3 ≡ t2α
1 ∧ α3 + t1α

1 ∧ α2,

(66)

where

(67) t1 := mR1 −m1, t2 := −m11 +m(1−R).

Further, we restrict to the 5-dimensional submanifold Ω̃ := {t1 = 0, t2 =
0} ⊂ Ω with coframe

(68) {α1, α2, α3, dm, dm2}.

Then, by a straightforward computation we have

θ2|Ω̃ = d(mR1)−m(1−R)α1 +m2α
3

≡ m{(R11 +R2
1 +R − 1)α1 + (R12 +

R1m2

m
)α2 + (−R2 +

m2

m
)α3}

mod θ1|Ω̃, θ2|Ω̃, θ3|Ω̃.
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From θ2|Ω̃ = 0, we obtain the equation

−R2 +
m2

m
= 0 ⇐⇒ m2 = mR2

and the following conditions on the given function R:

R11 +R2
1 +R− 1 = 0, R12 +R1R2 = 0.

From now on, we assume given R satisfies above two equations. We restrict

again to the 4-dimensional submanifold
˜̃
Ω := {m2 = mR2} ⊂ Ω̃ with coframe

(69) {α1, α2, α3, dm}.

It follows

θ3|˜̃
Ω

= d(mR2)− (1−R)mα2 −mR1α
3

≡ m(R22 +R2
2 +R− 1)α2 mod θ1|˜̃

Ω
, θ2|˜̃

Ω
, θ3|˜̃

Ω
.

Hence, in order to solve the PDEs (50), (51), the function R must satisfy:

(70) R22 + R2
2 +R− 1 = 0.

From now on, we assume that the R-Cartan structure α satisfies
(71)





dR−R1α
1 −R2α

2 = 0,

dR1 + (R2
1 +R− 1)α1 +R1R2α

2 +R2α
3 = 0,

dR2 + R1R2α
1 + (R2

2 +R− 1)α2 −R1α
3 = 0.

⇐⇒





R3 = 0,

R11 = 1−R−R2
1,

R12 = R21 = −R1R2,

R22 = 1−R−R2
2.

Hence, on the 4-dimensional submanifold
˜̃
Ω := {m2 = mR2} ⊂ Ω̃ with the

coframe

(72) {α1, α2, α3, dm}

we have θ2|˜̃
Ω
= θ3|˜̃

Ω
= 0 and

(73) dθ1|˜̃
Ω
= m(d(logm−R)).

Therefore, the Pfaffian system {θ1|˜̃
Ω

= 0} on
˜̃
Ω := {m2 = mR2} ⊂ Ω̃ is a

Frobenius system.
From the above computations, we remark that the following relation holds

(74) dm−mdR = 0 ⇐⇒ m = CeR,

where C is arbitrary constant, in other words, m is uniquely determined by the
structure function R of the Cartan structure α.

We conclude:

Proposition 5.1. For a given R-Cartan structure which satisfies (71), we have
one parameter family of solutions of the PDEs (50), (51).

Taking into account (74) we can also formulate:
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Proposition 5.2. Let us consider an R-Cartan structure α on the 3-manifold

Σ which satisfies (71). Then, the coframe

ω1 =
1

C
e−R(α3 −R2α

1),

ω2 =
1

C
e−Rα1,

ω3 = α2

(75)

gives an (I, 0,K) generalized Finsler structure (i.e., a generalized Landsberg

structure) on the 3-manifold Σ with the invariants

(76) I = −2R2, K = C2e2R.

Remark 5.1. The existence of an R-Cartan structure which satisfies (71) is
guaranteed by the existence of Generalized Landsber structures (see [12]) or
one can prove the existence of the R-Cartan structures by using the same
method (Cartan-Kähler theorem for the frame bundle) as in [12].

6. The geometry of the leaf space Λ

We will study in the present section the geometry of the quotient space Λ
that is the leafs space of the codimension two foliation {α1 = 0, α2 = 0} on
the 3-manifold Σ. This section is based on a private communication with R.
Bryant ([6]).

Let us recall from the previous section that we are given an R-Cartan struc-
ture {α1, α2, α3} on Σ whose structure function R satisfies (71).

Theorem 6.1. The R-Cartan structure (Σ, α) subject to the conditions (71)
induces on the leaf space Λ = Σ/{α1=0,α2=0} a family of smooth rotationally

symmetric Riemannian metrics

(77) g = η2(r)dr2 + ϕ2(r)dθ2,

where

(78) η(r) =
re−

1

4
r2

2Φ(r)
, ϕ(r) =

Φ(r)

R0 − 1
,

and

(79) Φ(r) =
[
(R0 −

3

2
)− (R0 −

3

2
−

1

4
r2)e−

1

2
r2
] 1

2

.

Here (r, θ) ∈ I × S1 are the induced local coordinates on Λ, and R0 > 1 is a

real constant.

Proof. It can be seen that from equations (71), one obtains

(80) d
((

R2
1 +R2

2 +R−
3

2

)
e2(R−1)

)
= 0,
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therefore, it must exists a constant C such that

(81)
(
R2

1 +R2
2 +R−

3

2

)
e2(R−1) = C.

Observe that the last formula can be rewritten as

(82) (R2
1 +R2

2)e
2(R−1) + f(R) = C,

where

(83) f(R) =
(
R−

3

2

)
e2(R−1)

is a smooth function of one variable. Since (R2
1+R2

2)e
2(R−1) ≥ 0 it follows that

we must have f(R) ≤ C. A simple computation shows that f(1) = − 1
2 is the

minimum of f .
Therefore, one gets C ≥ − 1

2 with equality in the case R = 1, which is not
good for us and it will be therefore eliminated.

For any fixed C > − 1
2 , if we denote by (f(R0), R0) the intersection point of

the graph of f with the straight line f = C, it means that always there exists
a unique constant R0 > 1 such that C = f(R0) =

(
R0 −

3
2

)
e2(R0−1), therefore

(81) reads now

(84)
(
R2

1 +R2
2 +R−

3

2

)
e2(R−1) =

(
R0 −

3

2

)
e2(R0−1)

for any constant R0 > 1. Obviously we must have R ≤ R0.
On the other hand, one can see that

(85) d
[ e(R0−R)

R2
1 +R2

2

(R1α
1 +R2α

2)
]
= d

[ e(R0−R)

R2
1 +R2

2

(R2α
1 −R1α

2)
]
= 0.

Therefore, if we denote

(86) dz1 =
e(R0−R)

R2
1 +R2

2

dR, dz2 =
e(R0−R)

R2
1 +R2

2

dR

it follows

(87) (dz1)2 + (dz2)2 =
e2(R0−R)

R2
1 +R2

2

[
(α1)2 + (α2)2

]
.

Therefore, at least locally, one obtains a metric on Λ

(88) g = (α1)2 + (α2)2 =
R2

1 +R2
2

e2(R0−R)

[
(dz1)2 + (dz2)2

]
,

by using now (84) we get the equivalent form

g =
(
(R0 −

3

2
)− (R −

3

2
)e2(R−R0)

)[
(dz1)2 + (dz2)2

]

=
e2(R−R0)

(R0 −
3
2 )− (R − 3

2 )e
2(R−R0)

dR2 +
(
(R0 −

3

2
)− (R−

3

2
)e2(R−R0)

)
(dz2)

2
.

(89)
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One could now regard (R, z2) as the local coordinates on Λ, but it is better
to use the coordinate change (r, θ) 7→ (R, z2), where

(90) R = R0 −
r

4

2
, z2 =

θ

R0 − 1
.

This puts the metric g in the “polar coordinates” defined on a domain I×S1

(91) g = η2(r)dr2 + ϕ2(r)dθ2,

where I is an interval in R and

η(r) =
1

2

re−
1

4
r2

[
(R0 −

3
2 )− (R0 −

3
2 − 1

4r
2)e−

1

2
r2
] 1

2

,

ϕ(r) =

[
(R0 −

3
2 )− (R0 −

3
2 − 1

4r
2)e−

1

2
r2
] 1

2

R0 − 1
,

(92)

or, equivalently,

(93) η(r) =
re−

1

4
r2

2Φ(r)
, ϕ(r) =

Φ(r)

R0 − 1
,

where we put

(94) Φ(r) =
[
(R0 −

3

2
)− (R0 −

3

2
−

1

4
r2)e−

1

2
r2
] 1

2

.

One can easily see that this is a smooth rotational metric even at the origin
r = 0 and that the curvature R reaches its maximum there. �

Remark 6.1. 1. Conversely, for any R0 > 1, formula (77) defines a metric on

a region of the plane where (R0 −
3
2 )− (R0 −

3
2 − 1

4r
2)e−

1

2
r2 > 0 that satisfies

the desired conditions.
2. The value of the parameter R0 > 1 influences the geometry of the Rie-

mannian metric g, indeed

(1) for R0 ≥ 3
2 , (r, θ) ∈ R× S1, i.e., (r, θ) are global coordinates, in other

words (Λ, g) is a smooth Riemannian manifold;
(a) when R0 > 3

2 , the metric (77) is incomplete (because the r-curves
have finite length), and can not be extended because

lim
t→∞

k = −∞;

(b) when R0 = 3
2 , the metric gets the form

(95) g = dr2 + r2e−
r2

2 dθ2

which is a complete Riemannian metric;
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(2) for 1 < R0 < 3
2 the condition (R0−

3
2 )− (R0−

3
2 −

1
4r

2)e−
1

2
r2 ≥ 0 holds

for |r| ≤ T (R0) for a certain function T (R0) > 0.
This metric is not complete at t = ±T (R0), but the length of the

parallels goes to 0 as t → ±T (R0). Thus, the metric “completes” to
a singular 2-sphere, with one singularity at the “minimum curvature
pole”. This will be an actual singularity if the cone angle is not 2π,
and this will depend on the value of R0.

Let us point out that the prime integral m1 of the geodesic flow of (Λ, g)
constructed in Section 4 reads now m1 = R1e

R and therefore it gives a first
coordinate on the geodesic space M = Σ/{α1=0,α3=0}. Since the space M is the
leaf space of a codimension two foliation, it should have another coordinate,
but to find it explicitly on Σ, we need a second prime integral of the geodesic
flow of (Λ, g), and this is a difficult problem to be studied in the future. Instead
of doing this, we will induce local coordinates on M from the tangent bundle
of Λ in the next section.

7. The geometry of the surface of revolution (Λ, g)

Let us consider the complete surface of revolution with the metric (95). We
recall that the geodesic flow of a surface of revolution is completely integrable.

In polar coordinates, we have

(96) g11 = 1, g12 = g21 = 0, g22 = h2(r) = r2e−
r2

2 .

The sectional curvature of this metric is

(97) R =
3

2
−

1

4
r2 ≤

3

2
,

and non-vanishing Christoffel symbols

(98) γ1
22 = −hh′ =

r(r2 − 2)

2
e−

1

2
r2 , γ2

12 =
h′

h
= γ2

21 = −
1

2

r2 − 2

r
.

It follows that a curve γ : [a, b] → Λ, with γ(t) = (r(t), θ(t)) is a geodesic on
Λ if and only if it satisfies the following geodesic equations:

r′′ +
r(r2 − 2)

2
e−

1

2
r2(θ′)2 = 0,

θ′′ −
r2 − 2

r
r′θ′ = 0.

(99)

A straightforward computation shows that

(100)
d

dt

[
h2(r)θ′

]
γ(t)

= 0,

i.e., the function

(101) F = h2(r)θ′ = r2e−
r2

2 θ′
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is constant on the geodesic lines, and thus provides a prime integral of the
geodesic flow of (Λ, g). This is called the Clairaut integral (see for example
[14]).

A natural question to ask is if our prime integral m1 is different from the
usual Clairaut integral. With the notations above, we have:

Proposition 7.1. The prime integral R1e
R coincides with the Clairaut integral

F up to multiplication with a negative constant.

Proof. Let us denote by f1, f2 the g-orthonormal frame on Λ, then the relation
with the natural frame ∂

∂r ,
∂
∂θ can be written as

f1 =
1√
|g|

(∂
√
E

∂ζ2
∂

∂r
−

∂
√
E

∂ζ1
∂

∂θ

)
=: m1 ∂

∂r
+m2 ∂

∂θ
,

f2 =
1

√
E

(
ζ1

∂

∂r
+ ζ2

∂

∂θ

)
=: l1

∂

∂r
+ l2

∂

∂θ
,

(102)

where E = (ζ1)2 + h2(r)(ζ2)2 is the energy function of the Riemannian struc-
ture (Λ, g) and |g| = h2 is the determinant of the matrix (gij). Here we use
(r, θ, ζ1, ζ2) ∈ TΛ to denote the natural coordinates on the tangent space of
(Λ, g).

Their horizontal lifts to the unit sphere bundle Σ of (Λ, g) are

(103) f̂1 = m1 δ

δr
+m2 δ

δθ
, f̂2 = l1

δ

δr
+ l2

δ

δθ
,

where δ
δr ,

δ
δθ is the adapted basis of the horizontal subspace of TΛ with respect

to the Levi-Civita connection, i.e.,

δ

δr
=

∂

∂r
− γ2

12ζ
2 ∂

∂ζ2
=

∂

∂r
−

h′

h
ζ2

∂

∂ζ2
,

δ

δθ
=

∂

∂θ
− γ1

22ζ
2 ∂

∂ζ1
− γ2

21ζ
1 ∂

∂ζ2
=

∂

∂θ
+ hh′ζ2

∂

∂ζ1
−

h′

h
ζ1

∂

∂ζ2
.

(104)

With these notations, we have

(105) R1 = m1 δR

δr
+m2 δR

δθ
= m1 ∂R

∂r
.

We will compute now m1 as follows

(106) m1 =
1√
|g|

∂
√
E

∂ζ2
=

1

2E
√
|g|

∂E

∂ζ2
= h(r)

ζ2

E
,

and taking into account of (97) it follows that on Σ we have

(107) R1 = −rh(r)ζ2.

On the other hand, let us recall that the canonical lift of a geodesic γ of
(Λ, g) to the unit sphere bundle Σ = F(Λ, g) gives the geodesic flow of (Λ, g)
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on Σ. Its tangent vector is

(108) f̂2 = T̂ (t) = γ̇i(t)
δ

δxi
= r′

δ

δr
+ θ′

δ

δθ
,

and therefore, along the lines of the geodesic flow we have θ′ = dθ(f̂2) = l2 ≡ ζ2

on Σ.
Finally, observing that

(109) eR = e
3

2
− 1

4
r2 = e

3

2

h

r
it follows

(110) R1e
R = −e

3

2h2ζ2,

i.e., on the geodesic flow of (Λ, g) we have R1e
R = −e

3

2F , and the proposition
is proved. �

Finally, let us remark that we can regard the space M as a submanifold of
the tangent space TΛ. On TΛ we have already two functionally independent
prime integrals of the geodesic flow of (Λ, g), namely, the Clairaut integral

F = −e−
3

2R1e
R, regarded now as function on TΛ, and the energy function E

of the Riemannian structure (Λ, g).
Therefore, we obtain in this way induced local coordinates (F,E) on M from

TΛ, i.e., πM : TΛ → M , (r, θ, ζ1, ζ2) 7→ (F,E). Pay attention to the fact that
M is not a smooth manifold because (Λ, g) cannot have all geodesics closed
and of same length.
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