참고문헌
-
D. E. Edmunds, J. Lang, and A. Nekvinda, On
$L^{p(x)}$ norms, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 455 (1999), no. 1981, 219-225. https://doi.org/10.1098/rspa.1999.0309 -
D. E. Edmunds and J. Rakosnik, Density of smooth functions in
$W^{k,p(x)}$ $({\Omega})$ , Proc. Roy. Soc. London Ser. A 437 (1992), no. 1899, 229-236. https://doi.org/10.1098/rspa.1992.0059 - D. E. Edmunds and J. Rakosnik, Sobolev embedding with variable exponent, Studia Math. 143 (2000), no. 3, 267-293.
-
X. Fan, J. Shen, and D. Zhao, Sobolev embedding theorems for spaces
$W^{k,p(x)}$ $({\Omega})$ , J. Math. Anal. Appl. 262 (2001), no. 2, 749-760. https://doi.org/10.1006/jmaa.2001.7618 -
X. L. Fan and D. Zhao, On the Spaces
$L^{p(x)}$ $({\Omega})$ and$W^{m,p(x)}$ $({\Omega})$ , J. Math. Anal. Appl. 263 (2001), no. 2, 424-446. https://doi.org/10.1006/jmaa.2000.7617 - I. Fragal`a, F. Gazzola, and B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincare Anal. Non Lineaire 21 (2004), no. 5, 751-734.
-
O. Kovacik and J. Rakosniık, On spaces
$L^{p(x)}$ and$W^{1,p(x)}$ , Czechoslovak Math. J. 41(116) (1991), no. 4, 592-618. - M. Mihailescu, On a class of nonlinear problems involving a p(x)-Laplace type operator, Czechoslovak Math. J. 58(133) (2008), no. 1, 155-172. https://doi.org/10.1007/s10587-008-0011-1
- M. Mihailescu and G. Morosanu, Existence and multiplicity of solutions for an anisotropic elliptic problem involving variable exponent growth conditions, Appl. Anal. 89 (2010), no. 2, 257-271. https://doi.org/10.1080/00036810802713826
- M. Mihailescu and G. Morosanu, On an eigenvalue problem for an anisotropic elliptic equation involving variable exponents, Glasg. Math. J. 52 (2010), no. 3, 517-527. https://doi.org/10.1017/S001708951000039X
- M. Mihailescu, P. Pucci, and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008), no. 1, 687-698. https://doi.org/10.1016/j.jmaa.2007.09.015
- M. Mihailescu and V. Radulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462 (2006), no. 2073, 2625-2641. https://doi.org/10.1098/rspa.2005.1633
- J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, Vol. 1034, Springer, Berlin, 1983.
- S. M. Nikol'skii, On imbedding, continuation and approximation theorems for differentiable functions of several variables, Russian Math. Surveys 16 (1961), 55-104. https://doi.org/10.1070/RM1961v016n05ABEH004113
- P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Expository Lectures from the CBMS Regional Conference held at the University of Miami, American Mathematical Society, Providence, RI. 1984.
- J. Rakosnik, Some remarks to anisotropic Sobolev spaces. I, Beitrage Anal. 13 (1979), 55-68.
- J. Rakosnik, Some remarks to anisotropic Sobolev spaces. II, Beitrage Anal. 15 (1981), 127-140.
- M. Ruzicka, Electrorheological Fluids Modeling and Mathematical Theory, Springer- Verlag, Berlin, 2002.
- M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Heidelberg, 1996.
- M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ric. Mat. 18 (1969), 3-24.
- L. Ven'-tuan, On embedding theorems for spaces of functions with partial derivatives of various degree of summability, Vestnik Leningrad. Univ. 16 (1961), 23-37.