DOI QR코드

DOI QR Code

ANISOTROPIC QUASILINEAR ELLIPTIC EQUATIONS WITH VARIABLE EXPONENT

  • 투고 : 2010.07.07
  • 발행 : 2012.11.01

초록

We study some anisotropic boundary value problems involving variable exponent growth conditions and we establish the existence and multiplicity of weak solutions by using as main argument critical point theory.

키워드

참고문헌

  1. D. E. Edmunds, J. Lang, and A. Nekvinda, On $L^{p(x)}$ norms, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 455 (1999), no. 1981, 219-225. https://doi.org/10.1098/rspa.1999.0309
  2. D. E. Edmunds and J. Rakosnik, Density of smooth functions in $W^{k,p(x)}$ $({\Omega})$, Proc. Roy. Soc. London Ser. A 437 (1992), no. 1899, 229-236. https://doi.org/10.1098/rspa.1992.0059
  3. D. E. Edmunds and J. Rakosnik, Sobolev embedding with variable exponent, Studia Math. 143 (2000), no. 3, 267-293.
  4. X. Fan, J. Shen, and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}$ $({\Omega})$, J. Math. Anal. Appl. 262 (2001), no. 2, 749-760. https://doi.org/10.1006/jmaa.2001.7618
  5. X. L. Fan and D. Zhao, On the Spaces $L^{p(x)}$ $({\Omega})$ and $W^{m,p(x)}$ $({\Omega})$, J. Math. Anal. Appl. 263 (2001), no. 2, 424-446. https://doi.org/10.1006/jmaa.2000.7617
  6. I. Fragal`a, F. Gazzola, and B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincare Anal. Non Lineaire 21 (2004), no. 5, 751-734.
  7. O. Kovacik and J. Rakosniık, On spaces$L^{p(x)}$ and $W^{1,p(x)}$, Czechoslovak Math. J. 41(116) (1991), no. 4, 592-618.
  8. M. Mihailescu, On a class of nonlinear problems involving a p(x)-Laplace type operator, Czechoslovak Math. J. 58(133) (2008), no. 1, 155-172. https://doi.org/10.1007/s10587-008-0011-1
  9. M. Mihailescu and G. Morosanu, Existence and multiplicity of solutions for an anisotropic elliptic problem involving variable exponent growth conditions, Appl. Anal. 89 (2010), no. 2, 257-271. https://doi.org/10.1080/00036810802713826
  10. M. Mihailescu and G. Morosanu, On an eigenvalue problem for an anisotropic elliptic equation involving variable exponents, Glasg. Math. J. 52 (2010), no. 3, 517-527. https://doi.org/10.1017/S001708951000039X
  11. M. Mihailescu, P. Pucci, and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008), no. 1, 687-698. https://doi.org/10.1016/j.jmaa.2007.09.015
  12. M. Mihailescu and V. Radulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462 (2006), no. 2073, 2625-2641. https://doi.org/10.1098/rspa.2005.1633
  13. J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, Vol. 1034, Springer, Berlin, 1983.
  14. S. M. Nikol'skii, On imbedding, continuation and approximation theorems for differentiable functions of several variables, Russian Math. Surveys 16 (1961), 55-104. https://doi.org/10.1070/RM1961v016n05ABEH004113
  15. P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Expository Lectures from the CBMS Regional Conference held at the University of Miami, American Mathematical Society, Providence, RI. 1984.
  16. J. Rakosnik, Some remarks to anisotropic Sobolev spaces. I, Beitrage Anal. 13 (1979), 55-68.
  17. J. Rakosnik, Some remarks to anisotropic Sobolev spaces. II, Beitrage Anal. 15 (1981), 127-140.
  18. M. Ruzicka, Electrorheological Fluids Modeling and Mathematical Theory, Springer- Verlag, Berlin, 2002.
  19. M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Heidelberg, 1996.
  20. M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ric. Mat. 18 (1969), 3-24.
  21. L. Ven'-tuan, On embedding theorems for spaces of functions with partial derivatives of various degree of summability, Vestnik Leningrad. Univ. 16 (1961), 23-37.