DOI QR코드

DOI QR Code

TETRAVALENT SYMMETRIC GRAPHS OF ORDER 9p

  • Guo, Song-Tao (Department of Mathematics Beijing Jiaotong University) ;
  • Feng, Yan-Quan (Department of Mathematics Beijing Jiaotong University)
  • Received : 2010.05.07
  • Published : 2012.11.01

Abstract

A graph is symmetric if its automorphism group acts transitively on the set of arcs of the graph. In this paper, we classify tetravalent symmetric graphs of order $9p$ for each prime $p$.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Y. G. Baik, Y.-Q. Feng, H. S. Sim, and M. Y. Xu, On the normality of Cayley graphs of abelian groups, Algebra Colloq. 5 (1998), no. 3, 297-304.
  2. N. Biggs, Algebraic Graph Theory, Second ed., Cambridge University Press, Cambridge, 1993.
  3. C. Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc. 158 (1971), 247-256. https://doi.org/10.1090/S0002-9947-1971-0279000-7
  4. Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory B 42 (1987), no. 2, 196-211. https://doi.org/10.1016/0095-8956(87)90040-2
  5. H. J. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Group, Clarendon Press, Oxford, 1985.
  6. J. D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, New York, 1996.
  7. Y.-Q. Feng and M. Y. Xu, Automorphism groups of tetravalent Cayley graphs on regular p-groups, Discrete Math. 305 (2005), no. 1-3, 354-360. https://doi.org/10.1016/j.disc.2005.10.009
  8. A. Gardiner and C. E. Praeger, On 4-valent symmetric graphs, European J. Combin. 15 (1994), no. 4, 375-381. https://doi.org/10.1006/eujc.1994.1041
  9. A. Gardiner and C. E. Praeger, A characterization of certain families of 4-valent symmetric graphs, European J. Combin. 15 (1994), no. 4, 383-397. https://doi.org/10.1006/eujc.1994.1042
  10. D. Gorenstein, Finite Simple Groups, Plenum Press, New York, 1982.
  11. B. Huppert, Eudiche Gruppen I, Springer-Verlag, Berlin, 1967
  12. J. H. Kwak and J. M. Oh, One-regular normal Cayley graphs on dihedral groups of valency 4 or 6 with cyclic vertex stabilizer, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 5, 1305-1320. https://doi.org/10.1007/s10114-005-0752-9
  13. C. H. Li, On finite s-transitive graphs of odd order, J. Combin. Theory Ser. B 81 (2001), no. 2, 307-317. https://doi.org/10.1006/jctb.2000.2012
  14. C. H. Li, Z. P. Lu, and D. Marusic, On primitive permutation groups with small suborbits and their orbital graphs, J. Algebra 279 (2004), no. 2, 749-770. https://doi.org/10.1016/j.jalgebra.2004.03.005
  15. C. H. Li, Z. P. Lu, and H. Zhang, Tetravalent edge-transitive Cayley graphs with odd number of vertices, J. Combin. Theory Ser. B 96 (2006), no. 1, 164-181. https://doi.org/10.1016/j.jctb.2005.07.003
  16. P. Lorimer, Vertex-transitive graphs: symmetric graphs of prime valency, J. Graph Theory 8 (1984), no. 1, 55-68. https://doi.org/10.1002/jgt.3190080107
  17. B. D. Mckay, Transitive graphs with fewer than twenty vertices, Math. Comp. 33 (1979), no. 147, 1101-1121. https://doi.org/10.1090/S0025-5718-1979-0528064-2
  18. J. M. Oh and K. W. Hwang, Construction of one-regular graphs of valency 4 and 6, Discrete Math. 278 (2004), no. 1-3, 195-207. https://doi.org/10.1016/S0012-365X(03)00252-8
  19. D. J. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1982.
  20. B. O. Sabidussi, Vertex-transitive graphs, Monatsh. Math. 68 (1964), 426-438. https://doi.org/10.1007/BF01304186
  21. C. Q. Wang and M. Y. Xu, Non-normal one-regular and 4-valent Cayley graphs of dihedral groups $D_{2n}$, European J. Combin. 27 (2006), no. 5, 750-766. https://doi.org/10.1016/j.ejc.2004.12.007
  22. C. Q. Wang and Z. Y. Zhou, 4-valent one-regular normal Cayley graphs of dihedral groups, Acta Math. Sin. Chin. Ser. 49 (2006), 669-678. https://doi.org/10.1007/s11425-006-0669-5
  23. R. J. Wang and M. Y. Xu, A classification of symmetric graphs of order 3p, J. Combin. Theory Ser. B 58 (1993), no. 2, 197-216. https://doi.org/10.1006/jctb.1993.1037
  24. S. Wilson and P. Potocnik, A census of edge-transitive tetravalent graphs, http://jan.ucc.nau.edu/ swilson/C4Site/index.html.
  25. J. Xu and M. Y. Xu, Arc-transitive Cayley graphs of valency at most four on abelian groups, Southeast Asian Bull. Math. 25 (2001), no. 2, 355-363. https://doi.org/10.1007/s10012-001-0355-z
  26. M. Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998), no. 1-3, 309-319. https://doi.org/10.1016/S0012-365X(97)00152-0
  27. M. Y. Xu, A note on one-regular graphs of valency 4, Chinese Science Bull. 45 (2000), 2160-2162.
  28. M. Y. Xu, A note on permutation groups and their regular subgroups, J. Aust. Math. Soc. 85 (2008), no. 2, 283-287. https://doi.org/10.1017/S1446788708000967
  29. J.-X. Zhou, Tetravalent s-transitive graphs of order 4p, Discrete Math. 309 (2009), no. 20, 6081-6086. https://doi.org/10.1016/j.disc.2009.05.014
  30. J.-X. Zhou and Y.-Q. Feng, Tetravalent s-transitive graphs of order twice a prime power, J. Aust. Math. Soc. 88 (2010), no. 2, 277-288. https://doi.org/10.1017/S1446788710000066
  31. J.-X. Zhou and Y.-Q. Feng, Tetravalent one-regular graphs of order 2pq, J. Algebraic Combin. 29 (2009), no. 4, 457-471. https://doi.org/10.1007/s10801-008-0146-z

Cited by

  1. Normal edge-transitive and -arc-transitive semi-Cayley graphs 2018, https://doi.org/10.1080/00927872.2017.1344692
  2. Hexavalent symmetric graphs of order 9 p vol.340, pp.10, 2017, https://doi.org/10.1016/j.disc.2017.05.011