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ABSTRACT

Summed area table allows filtering of arbitrary-width box regions for every pixel in
constant time per pixel. This characteristic makes it beneficial in image processing
applications where the sum or average of the surrounding pixel intensity is required.
Although calculating the summed area table of an image data is primarily a memory
bound job consisting of row or column-wise summation, previous works had to endure
excessive access to the high latency global memory in order to exploit data parallelism.
In this paper, we propose an efficient algorithm for generating the summed area table in
the GPGPU environment where the input is decomposed into square sub-images with
intermediate data that are propagated between them. By doing so, the global memory
access is almost halved compared to the previous methods making an efficient use of the
available memory bandwidth. The results show a substantial increase in performance.
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1. Introduction

Originally devised as an alternative to mip
mapping, the usage of summed area table has
been extended to various types of blur filtering
to increase the realism in 3D graphics.

With the minuscule additional overhead of
generating the summed area table, the sum of
an arbitrary rectangular region for all the
pixels of an image can be simply calculated by
a few addition operations per pixel during
run—-time. This can be used to filter regions of
different size for every pixel in constant time
per pixel, invariant of the region size.

There are numerous applications for summed
area table including anti-aliasing[l], image
filtering[2]
depth of field[4]. Moreover, feature tracking

environmental mapping[3], and

applications[5,6] in augmented reality use
summed area table as a way to filter the
image to make the edges more prominent and
suitable for feature candidates.

The rest of the paper is organized as the
following. Section 2 briefly describes previous
related work. Then in section 3, fundamental
idea behind summed area table and issues
GPU

Section 4 proposes our memory bandwidth

regarding implementation is  given.

efficient algorithm. Section 5 demonstrates the
experimental results of the proposed algorithm

and makes comparison against previous

implementations. Finally, we draw to a

conclusion in section 6 and express future

related work.

2. Related Work

Crowl[1]

area table to find a more accurate value for

invented the concept of summed

anti—aliasing mapped texture. Because the main
concern was on the quality of the output
he had

computation time.

image, inconclusive results on the

Hensley et. al.[3] extended the application of
the summed area table to creating glossy and
at interactive rates.

transparent  surfaces

However, they employed a work-inefficient
method of recursive doubling to calculate the
prefix scan.

Harris et. al.[7] described summed area table
as an example of their work-efficient parallel
In order to maintain global

prefix scan.

memory coalescing when fetching data in
vertical columns, they transposed the image so
that the columns can be processed horizontally.

In this paper, we present a novel method of
the table. All

accesses to the global memory are coalesced

generating summed area
and the total amount is reduced by nearly half
compared to previous methods. In addition, the
performance can be optimized for various
graphics hardware by modulating the data
processed per thread-block, a tradeoff between
communication  time

and memory latency

hiding capability.

3. Summed Area Table and GPU

3.1 Summed Area Table

The summed area table contains the sum of
the pixel values from the lower left corner of
an image to the location of the current pixel
for all pixels. The sum of the pixel values for

an axis-aligned rectangular region, as shown
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Xi X:

[Fig. 1] Calculation of summed area from table

by the blackened area in [Fig. 1], can be
found by simply taking the value at (X, Yu
and subtracting the values at (X;, Yy and (X,
Y:,) followed by adding the value at (Xi, Yp).
This is true because the integral of the (X,
Yy, Xi, Yo region equals the integral of (0, O,
X:, Y¢) minus the integrals of regions (0, 0, X,
Yy and (0, 0, X, Yy and then adding the
integral for (0, 0, X, Ys) since the hatched
area has been subtracted twice. Similarly, the
average of the target region can be found by
calculating the sum and then dividing by the

area of the region.

3.2 GPGPU

The GPU is a commodity hardware which

provides performance rivaling that of a
supercomputer at a fraction of the cost. It is
composed of a highly parallel architecture
which leverages between the cost-effective
single-instruction-multiple-data(SIMD)  design
and the flexibility of the

multiple-instruction-multiple-data(MIMD)

programmable

design. In respect to that matter, it resembles
more of a single-program-multiple-data
(SPMD) model. The SIMD characteristic of the
GPU is method  called

single-instruction-multiple-thread(SIMT) where

realized by a

a batch of cooperatively  synchronized
computation units called scalar processors(SP)
execute identical instruction at any given time.
This batch is named streaming multiprocessor
(SM) and is composed of a fixed number of
SPs. On the other hand, each of the SMs are
completely exclusive of each other in terms of
instruction dispatch and execution. Therefore,
SPMD property is achieved.

As there may be thousands of SPs present
on a GPU, supplying the appropriate data to
the computation core is a critical issue. In the
organized in a

current GPU, memory is

hierarchical structure  to  alleviate  the
bandwidth probleml[8].

The global memory which may be used as
a communication channel between all the
cores, provides huge storage space reaching up
to 3GB. However, the latency can be up to
hundreds  of fetch.

Therefore, it is more widely used as a medium

cycles per memory
for initial transfer of data from the host
memory to the SPs and returning the final
results back to the host. In order to increase
the performance of the global memory
subsystem, the GPU employs a method called
coalescing. Here, memory fetch is made in
units of 128-byte aligned contiguous memory
block. If all the SPs within a SM can be
serviced by a block, access is compacted into
a single transaction. However, if data required
by a SM spans across multiple blocks, the
access are serialized, thus fracturing coalescing
and degrading performance. As global memory
is the slowest component in a GPU by
hundreds of times than any other units, loss of
coalesced access has the greatest impact on

the overall performance and even discourages
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GPU parallelization all together.
The second type of memory in the GPU is
the It

memory built into every SM and is utilized as

shared memory. is a low latency
a means to transfer data between SPs within
a SM. Most applications implemented on the
GPU depend heavily on it for fast storage.
However, the size of the shared memory is
restrictive to at most 48KB per SM.

addition, it is one of the limiting factors on

In

how many logical kernels, called warps, can be
resident on a SM at a time. The number of
resident warps equates to the chances of
hiding memory latencies and branch overhead.
the

amount of shared memory usage and making

Therefore, careful negotiation between
efficient use of the available memory resources
is critical in obtaining optimal performance.

Lastly, the private memory is exclusive to a
particular SP and usually used as a per-thread
cache substitute or storing temporary data.
There are other types of memory such as
constant or local memory but are seldomly
used.

Except for operations which involve usage
of the special function unit, the throughput of
computation units is one or two cycles per
instruction. On the other hand, strict criteria,
such as avoidance of memory bank conflict or
instruction—level parallelism, must be met to
the

on—chip memory subsystem such as shared

achieve comparable performance from
memory or registers[9]. Thus, implementations
on the GPU must be memory bound and try
to make the memory access pattern and

bandwidth as optimal as possible.

3.3 Image Transpose Method

The generation of the summed area table in
GPGPU environment typically incorporates a
two-pass algorithm. On the first pass, each
row of the image is prefix scanned individually
and stored in 2D array format. On the second
pass, the stored values are prefix scanned by
columns. However, a straightforward
implementation as mentioned would hamper
performance, because a typical GPU performs
transaction on the global memory in chunks of
fixed-size bytes usually between 32 to 128
bytes. Therefore, executing prefix scan on the
columns would require long strides through the
memory Wwhere each transaction would result
in most of the fetched data to be discarded
from non-coalesced reads.
al.[7]

transposing the 2D array after the row-wise

Harris et. solved this problem by
scan. This way, the second pass can be made
on rows of data instead of the columns and
still have the same effect.

The image transpose method proposed by
Harris et. al initiates by de-interlacing the
input 8-bit per channel RGBA to four 32-bit
floating point values. This is due to the fact
that the GPU

32-bit floating point values streaming through

is optimized for processing
the hardware’s pixel pipeline[8]. As such, they
tried to use the most proficient data type.
Afterwards, prefix scan is performed on the
row-wise fashion. In another words, each row
The

method incorporated in the parallel prefix scan

is scanned independent of other rows.

algorithm is known as recursive doubling[10]
devised by Kogge and Stone. At the added

cost of Of(nlogn) computations, this method

reduces the original O(n) processing time to

O(logn) if enough parallel processors are
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available.

Thereafter, the image 1is transposed. The
input image data is  partitioned into
sub-images of 16x16 pixels to be processed by
each thread-block consisting of 256 threads
which

Appropriate sub-image for each thread-block

equates to one thread per pixel

is loaded from the global memory and
transposed within the shared memory. Then,
the processed sub-image stored with the x
and y axis swapped in the global memory
space.

Lastly, the first phase of row-wise parallel
prefix scan is repeated on the transpoed image
data. The resulting summed area table is
transposed compared to the desired orientation.
Therefore, when accessing the generated
summed area table, the x and y coordinates

must be swapped to obtain the correct value.

4. Proposed Method

Performance of the applications implemented
on the GPU are usually bound by the amount
of memory access and the efficiency of the
access pattern. This is because the device
memory is the slowest component in the GPU
in addition to the fact that the memory
subsystem is optimized for bandwidth rather
than latency wunlike the host memory.
Assuming one byte per pixel, the previous
method of transposing the image to maintain
2#w*h

accesses each for row-wise scan, transpose,

global memory coalescing requires
and column-wise scan for a total of 6*w*h
where w and h are width and height in pixels

of the image respectively. This amounts to the

image being accessed recursively six times.

——— w/b blocks
I b pixels

T

)
-

1[I -

IY Y Y

h/b blocks —

YYYYVYY

Per-Block Operation

}7

[Fig. 2] The proposed divide and conguer method,

The input data is evenly divided between multiple

thread blocks which perform row and column—wise
summation,

In order to minimize the duplicative memory
access to the high latency global memory, we
propose a four-pass algorithm suitable for
GPU  architectures where the image 1is
uniformly divided into square sub-images of
b2 pixels per thread-block. A small value for
b means relatively less pixels are processed by
a thread-block causing higher number of

overall partial sums to be created which

translates to increased communication
overhead. A high value for b lowers the
overhead but since fewer thread-blocks are
created, the GPU has less
thread-blocks to through to hide

memory latencies.

resident

rotate

During the first pass, each thread-block
sums each column and row of the assigned 2D
input data towards the upper and right edge,
respectively. The summed row and column
data of each thread-block is collected into

separate arrays. The second pass performs
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[Fig. 3] The overall algorithmic view of the proposed three—pass summed area table, Each thread—block
performs row and column—wise prefix sum on the sub—image in parallel in (a). The second pass is
composed of prefix scanning the row—wise (b) and column—wise partial sums (c). Also, collecting,

scanning, and propagating pivot values (d) is processed during the second pass. In the third pass, each

thread—block references the row and column—wise partial sums from the adjacent thread—blocks to the
left and lower thread—blocks to complete the whole computation,

prefix sum on the combined row and column
data. In addition, pivot values which rest at
the of

thread-blocks exist are collected and prefix

corners where  four  adjacent
scanned. The resulting scanned data contain
the row and column-wise sums up to every
thread-block. The third pass scans the 2D
input data which was originally assigned to a
particular thread-block. Lastly, the result of

the third pass is propagated with the results

from the second pass to produce the final
summed table. The
illustrated in [Fig. 2].

The first pass is comprised of a grid of 2D
thread-blocks (w/b)*x(h/b)
in parallel. Each thread-block

The cooperative

area schematics are

in assignment

operating s
allocated a bxb sub-image.
threads execute parallel prefix scan to compute
the partial of the

individual rows and columns.

sum pixel values for

The resulting
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2%b elements are stored in two separate 1D
arrays (row- and column-wise partial sums
arrays) for all thread-blocks. The array is
logically partitioned into b elements per
segment where the segments are ordered in
the same consecutive order as the thread-block
index number. For example, a thread-block at
(x, y) engages writing to row-wise array
Note that the

partial sums array for the column-wise sums

starting at index w*y+b*x.

is also a 1D array so the global memory
access can be coalesced.

On the second pass, a single thread-block is
utilized since concurrency is only guaranteed
within a single thread-block through barrier
synchronization. First, the threads load the
array for the row-wise partial sums created in
the previous pass. Exclusive scan is performed
on the array and stored back to the global
memory. Afterwards, the column-wise partials
sums array is processed similarly. The vital
portion of the second pass is generating the
pivot values which serve as the storage for
the sum up to the lower left thread-block
relative to the current thread-block position on
the input image. The pivot values are acquired
from the last values of the column-wise
partial sums from each thread-block. These
pivot values are then scanned and propagated
to the column-wise sums which belong to the
adjacent thread-block to the right.

The third pass
thread-blocks again. The pixel values for the

facilitates multiple
allocated sub-image is loaded along with the
Zb elements pertaining to the relative position
of the thread-block in the row-wise and
column-wise partial sums arrays. This time

inclusive scan in both directions is performed

on allocated sub-image and the partial sums
are added accordingly. The overall algorithm is
demonstrated in Figure 3 and the pseudo code
is given in [Fig. 4].

The proposed method requires w*h+2*w+*h/b
accesses for the first pass (reduction), 4*w+*h/b
accesses for the second pass (partial sum

scan), and Z2*w*h+2*w*h/b accesses for the

1. procedure reduce

2. for bid := @ to blk_cnt in parallel do
3. for tid 8 to 256 in parallel do

4. copy_data_from_global_memory();

5. row_wise_prefix_scan();

E. column_wise prefix scan{);

7. if warp_id == {warp_cnt - 1) then
8. store_column_sum to_global memoryd);
9. if warp_id == @ then

18 store_row_sum_to_global_memory();
11. end

12. procedure row_sum_scan

13. for bid := @ to (img height / 256) in parallel do
14, For tid := @ to max_thd_cnt in parallel do

15. copy_row_sum_fTrom_global_memory();

16. rov_wise_prefix_scan_on_row_sum();

17. store_scanned_row_sum_to_global_memoryd J;

18. end

1%. procedure col_sum_scan
28. for tid := @ to 256 in parallel do

21. copy_col_sum_from_global_memoryi();
22. col_wise_prefix_scan_on_col_sumi);
23, if tid ¥ 32 == 31 then

collect_pivet_value();

25. if wid < {img_height / 32 - 1) then

26. scan_pivot_values();

7. if warp_id » @ then

28 propagate_scanned_pivot_value_to_col_sum{);
29. store_scanned_col_sum to_global_memory();
8. end

31. procedure intra_scan

3z. for bid := @ to blk_ont in parallel do

33. for tid := @ ©o 256 in parallel do

3. copy_ From_global _memory();

35. copy_row_col_sum_from_global_memory();
36. row_wise_prefix_scan();

7. column_wise prefix scan);

38, store_data_to_global_memory();

39. end

[Fig. 4] Pseudo code for generating the summed

area table for the proposed method, The method

is composed of four phases or kernel calls, each
executed in the given order,
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third pass (scan). The total accumulates to
Sxw+h+8*w+h/b. Therefore, as long as b>2, the

amount of global memory access is reduce
compared to Harris’ method.
The implementation of the  proposed

implementation algorithm is restricted by the
amount of usable shared memory available on
a SM. In order to support arbitrary sized
sub-image, we fixed the concurrent internal
processing task to 32x32 sub-image in order
to minimize the memory footprint. Then, the
assigned sub-image is processed in a patch
32x32 in size at a time recursively to reduce
or scan the whole input sub-image.

The internal processing size of 32x32 was
selected based on the shared memory available
on the commodity GPU which ranges from
16KB to 48KB. More importantly, the prefix
scan employed is work inefficient although the
depth

input data size when even more memory is

is optimal. Therefore, increasing the
available will hinder the execution performance
with O(nlogn) work complexity. On the other
hand, decreasing the input data size below the
SIMD data width of 32 specified as the warp
size in the GPU will only cause parts of the
data path to be

performance-wise.

idle and have no effect

The shared memory is divided into banks of
equal size to concurrently supply data to the
multiple cores with access demands without
delay. However, memory bank conflict will
cause the access to be serialized causing
performance to degrade substantially.
Therefore, we mapped the data into the shared
memory so that every thread in any warp will
be assigned to a different memory bank. This

is accomplished by padding the actual image

data with empty padded region to avoid shared
memory bank conflict during the column-wise
scans. Otherwise, every SM must endure
maximum amount of serialization due to bank
conflicts. Since the warp size is 32 threads,
each shared memory access will be subject to
32 times the original latency of the memory.
As for the cooperative threads working on
prefix scanning the 2D sub-image allotted to
each thread-block, we employ Kogge-Stone
style graph of which the depth is equal to the
bound.

. d
require 2

theoretical lower However,

Kogge-Stone style graphs less
computations as each depth of the graph is
traversed. Thus, branching instructions must
be employed to mask out illegal memory
accesses. However, these instructions can be
avoilded by appending padding zones for
useless threads to simply spill onto them. In
addition, data
equal to the SIMD

synchronization can also be removed.

is partitioned into segments

width, therefore, barrier

5. Experimental Results

The benchmark system was composed of
AMD FX6100 CPU running at 3.3GHz with
8GB of memory. It was also equipped with a
dedicated NVIDIA GeForce GTX580 with 3GB
of device memory for undivided parallel
processing. This hardware is equipped with 16
SMs each of which facilitates 32 SPs for a
total of 512 cores. The memory subsystem is
capable of transferring 192.4GB of data to
those cores per second.

The measurement of the execution time was

achieved with the help of the Visual Profiler
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provided with the NVIDIA CUDA Toolkit. The
tool supports measurements in microsecond
accuracy and also produces useful statistics
shared

such as peak memory bandwidth,

memory conflict percentage, and hardware
occupancy.
The input

random pixel

image was generated with

values to simulate arbitrary
images and the color space was converted to
gray-scale, because most applications of the
summed area table uses this color space to
either reduce memory/computation amount or
characteristics such as

application  specific

making edges more prominent in image

processing applications.

25

------ €PU (Serial)

on || === Image Transpose

—— Praposed

15

Throughput (GB/s)

Input Image Size

[Fig. 5] Performance comparison between the
serial CPU execution, image transpose method by
Harris and the proposed method,

Since the image transpose method devised
by Harris et el. is publically available on the
web as part of the CUDPP library[1l], we
utilized it with minimal modifications for our
benchmark. The input data, as stated above,
has been reduced to a single channel and

performance was measured using the NVIDIA

Visual Profiler.

The experiment started out at an image size
of 64x64 and was increased to 2048x2048. The
image transpose method showed a noticeable
performance drop past 1024x2048. This is due
to the extra burden of splitting the input data
into manageable size and combining the partial
results to achieve the global summed area
table. As expected, the
2048x2048  only
considerable gap between the throughput of

experiments past
showed results that had
the previous and the proposed method.

[Fig. 5] depicts the comparison results of
the summed area table generated by serially
executing on the CPU, the previous method of
image transposing devised by Harris, and the
proposed parallel thread-block based divide and
conquer method. The serial CPU execution
showed a steady throughput while the other
two parallel (previous and
exhibited

saturation as is known as the theoretical

implementations
proposed) log based performance
speedup of parallel machines.

The graph shows that the generation of the
summed area table is an application of the
GPU which is
Although the

noticeably more computations during memory

completely memory bound.
proposed method requires
address calculations and thread assignment, the
reduction in global memory access hides most
of the computation overhead. In our tests, the
proposed algorithm was up to 2.5 times faster
in the small problem set (under 256x256 image
size) and up to twice as fast compared to the
previous method in the large problem set (over

256x256 image size).
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6. Conclusion
We have presented a technique of

generating summed-area table efficiently on
GPGPU environment. By incorporating divide
and conquer method, the access to the global
memory was reduced by almost half compared
to the previous methods. This is achieved by
incorporating intermediate values which are
transmitted between thread-blocks working on
square sub-images. In addition, pivot values
are also transmitted between the intermediate
so that each thread-block has the

the

values

necessary information falling between
current sub-image and the starting point of
the input image.

The benchmark tests executed on the high
performance commodity GPU showed that
efficient access pattern of the proposed system
results in increased performance in generating

the summed area table.
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