
Journal of Korea Game Society JKGS ❙67

컴퓨터 그래픽스

Journal of Korea Game Society 2012 Oct; 12(5): 67-78

http://dx.doi.org/10.7583/JKGS.2012.12.5.67

CUDA를 이용한 효율적인 합산 영역 테이블의 생성 방법　

하상원*, 최문희**, 전태준*, 김진우*, 변혜란*, 한탁돈*

연세대학교 컴퓨터 과학과*, 삼성전자(주)**

swha815@gmail.com, mhchoi.0310@samsung.com, taejoon89@me.com,

jwkim@msl.yonsei.ac.kr, hrbyun@yonsei.ac.kr, hantack55@gmail.com

Bandwidth Efficient Summed Area Table Generation for CUDA

Sang-Won Ha*, Moon-Hee Choi**, Tae-Joon Jun*, Jinwoo Kim*,

Hyeran Byun*, Tack-Don Han*

Dept. of Computer Science, Yonsei Univ.*, Samsung Electronics Corp.**

요 약

합산 영역 테이블은 모든 픽셀에 대해 임의의 크기 사각영역의 이미지 필터링 처리를 일정
시간 안에 가능케 한다. 이러한 특성은 각각의 픽셀에 대해서 주변 픽셀의 밝기의 합 혹은 평
균을 필요로 하는 이미지 처리 적용 분야에 유용하게 쓰일 수 있다. 합산 영역 테이블의 생성
은 단지 행 혹은 열 단위의 합만을 구하는 메모리 바운드 작업임에도 불구하고 기존 연구들은
이미 존재하는 데이터 병렬성만을 활용하기 위하여 대기 시간이 긴 전역 메모리에 과도한 접근
을 하여야만 했다. 본 논문에서는 입력 데이터를 정방의 서브 이미지로 분할하고 매개 데이터
를 이들 간에 파급시킴으로써 GPGPU 환경 적합한 알고리즘을 제안하고자 한다. 이를 통하여
기존 방법 대비 전역 메모리 접근 량을 거의 반으로 줄임으로써 주어진 메모리 대역폭을 효율
적으로 사용한다. 결과에서도 성능이 대폭 향상되었다.

ABSTRACT

Summed area table allows filtering of arbitrary-width box regions for every pixel in
constant time per pixel. This characteristic makes it beneficial in image processing
applications where the sum or average of the surrounding pixel intensity is required.
Although calculating the summed area table of an image data is primarily a memory
bound job consisting of row or column-wise summation, previous works had to endure
excessive access to the high latency global memory in order to exploit data parallelism.
In this paper, we propose an efficient algorithm for generating the summed area table in
the GPGPU environment where the input is decomposed into square sub-images with
intermediate data that are propagated between them. By doing so, the global memory
access is almost halved compared to the previous methods making an efficient use of the
available memory bandwidth. The results show a substantial increase in performance.

Keywords : Summed area table(합산 영역 테이블), Integral Map(적분 맵), GPGPU(지피지피유),

Parallel Prefix Scan(병렬 프리픽스 스캔), Parallel Algorithm(병렬 알고리즘)

Received: Agu. 31, 2012 Accepted: Sept. 27, 2012

Corresponding Author: Tack-Don Han(Yonsei University)

E-mail: hantack55@gmail.com

ISSN: 1598-4540

Ⓒ The Korea Game Society. All rights reserved. This is an

open-access article distributed under the terms of the Creative

Commons Attribution Non-Commercial License

http://creativecommons.otg/licenses/by-nc/3.0), which permits

unrestricted non-commercial use, distribution, and reproduction in

any medium, provided the original work is properly cited.

68 ❙ Journal of Korea Game Society 2012 Oct; 12(5): 67-78

― CUDA를 이용한 효율적인 합산 영역 테이블의 생성 방법―

1. Introduction

Originally devised as an alternative to mip

mapping, the usage of summed area table has

been extended to various types of blur filtering

to increase the realism in 3D graphics.

With the minuscule additional overhead of

generating the summed area table, the sum of

an arbitrary rectangular region for all the

pixels of an image can be simply calculated by

a few addition operations per pixel during

run-time. This can be used to filter regions of

different size for every pixel in constant time

per pixel, invariant of the region size.

There are numerous applications for summed

area table including anti-aliasing[1], image

filtering[2] environmental mapping[3], and

depth of field[4]. Moreover, feature tracking

applications[5,6] in augmented reality use

summed area table as a way to filter the

image to make the edges more prominent and

suitable for feature candidates.

The rest of the paper is organized as the

following. Section 2 briefly describes previous

related work. Then in section 3, fundamental

idea behind summed area table and issues

regarding GPU implementation is given.

Section 4 proposes our memory bandwidth

efficient algorithm. Section 5 demonstrates the

experimental results of the proposed algorithm

and makes comparison against previous

implementations. Finally, we draw to a

conclusion in section 6 and express future

related work.

2. Related Work

Crow[1] invented the concept of summed

area table to find a more accurate value for

anti-aliasing mapped texture. Because the main

concern was on the quality of the output

image, he had inconclusive results on the

computation time.

Hensley et. al.[3] extended the application of

the summed area table to creating glossy and

transparent surfaces at interactive rates.

However, they employed a work-inefficient

method of recursive doubling to calculate the

prefix scan.

Harris et. al.[7] described summed area table

as an example of their work-efficient parallel

prefix scan. In order to maintain global

memory coalescing when fetching data in

vertical columns, they transposed the image so

that the columns can be processed horizontally.

In this paper, we present a novel method of

generating the summed area table. All

accesses to the global memory are coalesced

and the total amount is reduced by nearly half

compared to previous methods. In addition, the

performance can be optimized for various

graphics hardware by modulating the data

processed per thread-block, a tradeoff between

communication time and memory latency

hiding capability.

3. Summed Area Table and GPU

3.1 Summed Area Table

The summed area table contains the sum of

the pixel values from the lower left corner of

an image to the location of the current pixel

for all pixels. The sum of the pixel values for

an axis-aligned rectangular region, as shown

Journal of Korea Game Society JKGS ❙69

― Bandwidth Efficient Summed Area Table Generation for CUDA―

[Fig. 1] Calculation of summed area from table

by the blackened area in [Fig. 1], can be

found by simply taking the value at (Xr, Yt)

and subtracting the values at (Xl, Yt) and (Xr,

Yb) followed by adding the value at (Xl, Yb).

This is true because the integral of the (Xl,

Yb, Xr, Yt) region equals the integral of (0, 0,

Xr, Yt) minus the integrals of regions (0, 0, Xl,

Yt) and (0, 0, Xr, Yb) and then adding the

integral for (0, 0, Xl, Yb) since the hatched

area has been subtracted twice. Similarly, the

average of the target region can be found by

calculating the sum and then dividing by the

area of the region.

3.2 GPGPU

The GPU is a commodity hardware which

provides performance rivaling that of a

supercomputer at a fraction of the cost. It is

composed of a highly parallel architecture

which leverages between the cost-effective

single-instruction-multiple-data(SIMD) design

and the programmable flexibility of the

multiple-instruction-multiple-data(MIMD)

design. In respect to that matter, it resembles

more of a single-program-multiple-data

(SPMD) model. The SIMD characteristic of the

GPU is realized by a method called

single-instruction-multiple-thread(SIMT) where

a batch of cooperatively synchronized

computation units called scalar processors(SP)

execute identical instruction at any given time.

This batch is named streaming multiprocessor

(SM) and is composed of a fixed number of

SPs. On the other hand, each of the SMs are

completely exclusive of each other in terms of

instruction dispatch and execution. Therefore,

SPMD property is achieved.

As there may be thousands of SPs present

on a GPU, supplying the appropriate data to

the computation core is a critical issue. In the

current GPU, memory is organized in a

hierarchical structure to alleviate the

bandwidth problem[8].

The global memory which may be used as

a communication channel between all the

cores, provides huge storage space reaching up

to 3GB. However, the latency can be up to

hundreds of cycles per memory fetch.

Therefore, it is more widely used as a medium

for initial transfer of data from the host

memory to the SPs and returning the final

results back to the host. In order to increase

the performance of the global memory

subsystem, the GPU employs a method called

coalescing. Here, memory fetch is made in

units of 128-byte aligned contiguous memory

block. If all the SPs within a SM can be

serviced by a block, access is compacted into

a single transaction. However, if data required

by a SM spans across multiple blocks, the

access are serialized, thus fracturing coalescing

and degrading performance. As global memory

is the slowest component in a GPU by

hundreds of times than any other units, loss of

coalesced access has the greatest impact on

the overall performance and even discourages

70 ❙ Journal of Korea Game Society 2012 Oct; 12(5): 67-78

― CUDA를 이용한 효율적인 합산 영역 테이블의 생성 방법―

GPU parallelization all together.

The second type of memory in the GPU is

the shared memory. It is a low latency

memory built into every SM and is utilized as

a means to transfer data between SPs within

a SM. Most applications implemented on the

GPU depend heavily on it for fast storage.

However, the size of the shared memory is

restrictive to at most 48KB per SM. In

addition, it is one of the limiting factors on

how many logical kernels, called warps, can be

resident on a SM at a time. The number of

resident warps equates to the chances of

hiding memory latencies and branch overhead.

Therefore, careful negotiation between the

amount of shared memory usage and making

efficient use of the available memory resources

is critical in obtaining optimal performance.

Lastly, the private memory is exclusive to a

particular SP and usually used as a per-thread

cache substitute or storing temporary data.

There are other types of memory such as

constant or local memory but are seldomly

used.

Except for operations which involve usage

of the special function unit, the throughput of

computation units is one or two cycles per

instruction. On the other hand, strict criteria,

such as avoidance of memory bank conflict or

instruction-level parallelism, must be met to

achieve comparable performance from the

on-chip memory subsystem such as shared

memory or registers[9]. Thus, implementations

on the GPU must be memory bound and try

to make the memory access pattern and

bandwidth as optimal as possible.

3.3 Image Transpose Method

The generation of the summed area table in

GPGPU environment typically incorporates a

two-pass algorithm. On the first pass, each

row of the image is prefix scanned individually

and stored in 2D array format. On the second

pass, the stored values are prefix scanned by

columns. However, a straightforward

implementation as mentioned would hamper

performance, because a typical GPU performs

transaction on the global memory in chunks of

fixed-size bytes usually between 32 to 128

bytes. Therefore, executing prefix scan on the

columns would require long strides through the

memory where each transaction would result

in most of the fetched data to be discarded

from non-coalesced reads.

Harris et. al.[7] solved this problem by

transposing the 2D array after the row-wise

scan. This way, the second pass can be made

on rows of data instead of the columns and

still have the same effect.

The image transpose method proposed by

Harris et. al initiates by de-interlacing the

input 8-bit per channel RGBA to four 32-bit

floating point values. This is due to the fact

that the GPU is optimized for processing

32-bit floating point values streaming through

the hardware’s pixel pipeline[8]. As such, they

tried to use the most proficient data type.

Afterwards, prefix scan is performed on the

row-wise fashion. In another words, each row

is scanned independent of other rows. The

method incorporated in the parallel prefix scan

algorithm is known as recursive doubling[10]

devised by Kogge and Stone. At the added

cost of O(nlogn) computations, this method

reduces the original O(n) processing time to

O(logn) if enough parallel processors are

Journal of Korea Game Society JKGS ❙71

― Bandwidth Efficient Summed Area Table Generation for CUDA―

available.

Thereafter, the image is transposed. The

input image data is partitioned into

sub-images of 16x16 pixels to be processed by

each thread-block consisting of 256 threads

which equates to one thread per pixel.

Appropriate sub-image for each thread-block

is loaded from the global memory and

transposed within the shared memory. Then,

the processed sub-image stored with the x

and y axis swapped in the global memory

space.

Lastly, the first phase of row-wise parallel

prefix scan is repeated on the transpoed image

data. The resulting summed area table is

transposed compared to the desired orientation.

Therefore, when accessing the generated

summed area table, the x and y coordinates

must be swapped to obtain the correct value.

4. Proposed Method

Performance of the applications implemented

on the GPU are usually bound by the amount

of memory access and the efficiency of the

access pattern. This is because the device

memory is the slowest component in the GPU

in addition to the fact that the memory

subsystem is optimized for bandwidth rather

than latency unlike the host memory.

Assuming one byte per pixel, the previous

method of transposing the image to maintain

global memory coalescing requires 2*w*h

accesses each for row-wise scan, transpose,

and column-wise scan for a total of 6*w*h

where w and h are width and height in pixels

of the image respectively. This amounts to the

image being accessed recursively six times.

[Fig. 2] The proposed divide and conquer method.

The input data is evenly divided between multiple

thread blocks which perform row and column-wise

summation.

In order to minimize the duplicative memory

access to the high latency global memory, we

propose a four-pass algorithm suitable for

GPU architectures where the image is

uniformly divided into square sub-images of

b2 pixels per thread-block. A small value for

b means relatively less pixels are processed by

a thread-block causing higher number of

overall partial sums to be created which

translates to increased communication

overhead. A high value for b lowers the

overhead but since fewer thread-blocks are

created, the GPU has less resident

thread-blocks to rotate through to hide

memory latencies.

During the first pass, each thread-block

sums each column and row of the assigned 2D

input data towards the upper and right edge,

respectively. The summed row and column

data of each thread-block is collected into

separate arrays. The second pass performs

72 ❙ Journal of Korea Game Society 2012 Oct; 12(5): 67-78

― CUDA를 이용한 효율적인 합산 영역 테이블의 생성 방법―

[Fig. 3] The overall algorithmic view of the proposed three-pass summed area table. Each thread-block

performs row and column-wise prefix sum on the sub-image in parallel in (a). The second pass is

composed of prefix scanning the row-wise (b) and column-wise partial sums (c). Also, collecting,

scanning, and propagating pivot values (d) is processed during the second pass. In the third pass, each

thread-block references the row and column-wise partial sums from the adjacent thread-blocks to the

left and lower thread-blocks to complete the whole computation.

prefix sum on the combined row and column

data. In addition, pivot values which rest at

the corners of where four adjacent

thread-blocks exist are collected and prefix

scanned. The resulting scanned data contain

the row and column-wise sums up to every

thread-block. The third pass scans the 2D

input data which was originally assigned to a

particular thread-block. Lastly, the result of

the third pass is propagated with the results

from the second pass to produce the final

summed area table. The schematics are

illustrated in [Fig. 2].

The first pass is comprised of a grid of 2D

thread-blocks in (w/b)×(h/b) assignment

operating in parallel. Each thread-block is

allocated a b×b sub-image. The cooperative

threads execute parallel prefix scan to compute

the partial sum of the pixel values for

individual rows and columns. The resulting

Journal of Korea Game Society JKGS ❙73

― Bandwidth Efficient Summed Area Table Generation for CUDA―

2*b elements are stored in two separate 1D

arrays (row- and column-wise partial sums

arrays) for all thread-blocks. The array is

logically partitioned into b elements per

segment where the segments are ordered in

the same consecutive order as the thread-block

index number. For example, a thread-block at

(x, y) engages writing to row-wise array

starting at index w*y+b*x. Note that the

partial sums array for the column-wise sums

is also a 1D array so the global memory

access can be coalesced.

On the second pass, a single thread-block is

utilized since concurrency is only guaranteed

within a single thread-block through barrier

synchronization. First, the threads load the

array for the row-wise partial sums created in

the previous pass. Exclusive scan is performed

on the array and stored back to the global

memory. Afterwards, the column-wise partials

sums array is processed similarly. The vital

portion of the second pass is generating the

pivot values which serve as the storage for

the sum up to the lower left thread-block

relative to the current thread-block position on

the input image. The pivot values are acquired

from the last values of the column-wise

partial sums from each thread-block. These

pivot values are then scanned and propagated

to the column-wise sums which belong to the

adjacent thread-block to the right.

The third pass facilitates multiple

thread-blocks again. The pixel values for the

allocated sub-image is loaded along with the

2b elements pertaining to the relative position

of the thread-block in the row-wise and

column-wise partial sums arrays. This time

inclusive scan in both directions is performed

on allocated sub-image and the partial sums

are added accordingly. The overall algorithm is

demonstrated in Figure 3 and the pseudo code

is given in [Fig. 4].

The proposed method requires w * h + 2 * w * h / b

accesses for the first pass (reduction), 4*w*h/b

accesses for the second pass (partial sum

scan), and 2 * w * h + 2 * w * h / b accesses for the

[Fig. 4] Pseudo code for generating the summed

area table for the proposed method. The method

is composed of four phases or kernel calls, each

executed in the given order.

74 ❙ Journal of Korea Game Society 2012 Oct; 12(5): 67-78

― CUDA를 이용한 효율적인 합산 영역 테이블의 생성 방법―

third pass (scan). The total accumulates to

3*w*h+8*w*h/b. Therefore, as long as b>2, the

amount of global memory access is reduce

compared to Harris’ method.

The implementation of the proposed

implementation algorithm is restricted by the

amount of usable shared memory available on

a SM. In order to support arbitrary sized

sub-image, we fixed the concurrent internal

processing task to 32x32 sub-image in order

to minimize the memory footprint. Then, the

assigned sub-image is processed in a patch

32x32 in size at a time recursively to reduce

or scan the whole input sub-image.

The internal processing size of 32x32 was

selected based on the shared memory available

on the commodity GPU which ranges from

16KB to 48KB. More importantly, the prefix

scan employed is work inefficient although the

depth is optimal. Therefore, increasing the

input data size when even more memory is

available will hinder the execution performance

with O(nlogn) work complexity. On the other

hand, decreasing the input data size below the

SIMD data width of 32 specified as the warp

size in the GPU will only cause parts of the

data path to be idle and have no effect

performance-wise.

The shared memory is divided into banks of

equal size to concurrently supply data to the

multiple cores with access demands without

delay. However, memory bank conflict will

cause the access to be serialized causing

performance to degrade substantially.

Therefore, we mapped the data into the shared

memory so that every thread in any warp will

be assigned to a different memory bank. This

is accomplished by padding the actual image

data with empty padded region to avoid shared

memory bank conflict during the column-wise

scans. Otherwise, every SM must endure

maximum amount of serialization due to bank

conflicts. Since the warp size is 32 threads,

each shared memory access will be subject to

32 times the original latency of the memory.

As for the cooperative threads working on

prefix scanning the 2D sub-image allotted to

each thread-block, we employ Kogge-Stone

style graph of which the depth is equal to the

theoretical lower bound. However,

Kogge-Stone style graphs require 2
d less

computations as each depth of the graph is

traversed. Thus, branching instructions must

be employed to mask out illegal memory

accesses. However, these instructions can be

avoided by appending padding zones for

useless threads to simply spill onto them. In

addition, data is partitioned into segments

equal to the SIMD width, therefore, barrier

synchronization can also be removed.

5. Experimental Results

The benchmark system was composed of

AMD FX6100 CPU running at 3.3GHz with

8GB of memory. It was also equipped with a

dedicated NVIDIA GeForce GTX580 with 3GB

of device memory for undivided parallel

processing. This hardware is equipped with 16

SMs each of which facilitates 32 SPs for a

total of 512 cores. The memory subsystem is

capable of transferring 192.4GB of data to

those cores per second.

The measurement of the execution time was

achieved with the help of the Visual Profiler

Journal of Korea Game Society JKGS ❙75

― Bandwidth Efficient Summed Area Table Generation for CUDA―

provided with the NVIDIA CUDA Toolkit. The

tool supports measurements in microsecond

accuracy and also produces useful statistics

such as peak memory bandwidth, shared

memory conflict percentage, and hardware

occupancy.

The input image was generated with

random pixel values to simulate arbitrary

images and the color space was converted to

gray-scale, because most applications of the

summed area table uses this color space to

either reduce memory/computation amount or

application specific characteristics such as

making edges more prominent in image

processing applications.

[Fig. 5] Performance comparison between the

serial CPU execution, image transpose method by

Harris and the proposed method.

Since the image transpose method devised

by Harris et el. is publically available on the

web as part of the CUDPP library[11], we

utilized it with minimal modifications for our

benchmark. The input data, as stated above,

has been reduced to a single channel and

performance was measured using the NVIDIA

Visual Profiler.

The experiment started out at an image size

of 64x64 and was increased to 2048x2048. The

image transpose method showed a noticeable

performance drop past 1024x2048. This is due

to the extra burden of splitting the input data

into manageable size and combining the partial

results to achieve the global summed area

table. As expected, the experiments past

2048x2048 only showed results that had

considerable gap between the throughput of

the previous and the proposed method.

[Fig. 5] depicts the comparison results of

the summed area table generated by serially

executing on the CPU, the previous method of

image transposing devised by Harris, and the

proposed parallel thread-block based divide and

conquer method. The serial CPU execution

showed a steady throughput while the other

two parallel implementations (previous and

proposed) exhibited log based performance

saturation as is known as the theoretical

speedup of parallel machines.

The graph shows that the generation of the

summed area table is an application of the

GPU which is completely memory bound.

Although the proposed method requires

noticeably more computations during memory

address calculations and thread assignment, the

reduction in global memory access hides most

of the computation overhead. In our tests, the

proposed algorithm was up to 2.5 times faster

in the small problem set (under 256x256 image

size) and up to twice as fast compared to the

previous method in the large problem set (over

256x256 image size).

76 ❙ Journal of Korea Game Society 2012 Oct; 12(5): 67-78

― CUDA를 이용한 효율적인 합산 영역 테이블의 생성 방법―

6. Conclusion

We have presented a technique of

generating summed-area table efficiently on

GPGPU environment. By incorporating divide

and conquer method, the access to the global

memory was reduced by almost half compared

to the previous methods. This is achieved by

incorporating intermediate values which are

transmitted between thread-blocks working on

square sub-images. In addition, pivot values

are also transmitted between the intermediate

values so that each thread-block has the

necessary information falling between the

current sub-image and the starting point of

the input image.

The benchmark tests executed on the high

performance commodity GPU showed that

efficient access pattern of the proposed system

results in increased performance in generating

the summed area table.

ACKNOWLEDGMENT

This research was supported by Basic

Science Research Program through the

National Research Foundation of Korea (NRF)

funded by the Ministry of Education, Science,

and Technology. (2011-No.2011-0027450)

REFERENCES

[1] Crow, F. C. “Summed-area tables for texture

mapping,” In SIGGRAPH '84: Proceedings of

the 11th annual conference on Computer

graphics and interactive techniques, NY, NY,

USA, pp 207-212, 1984.

[2] Heckbert, P. S., “Filtering by Repeated

Integration,” ACM SIGGRAPH Computer

Graphics, Vol. 20, No. 4, pp 315-321, 1986.

[3] Hensley, J., Scheuermann, T., Coombe, G.,

Singh, M., and Lastra, A. “Fast

summed-area table generation and its

applications,” Computer Graphics Forum, Vol.

24, No. 3, pp 547-555, Sept. 2005.

[4] Demers, J., “Depth of Field: A Survey of

Techniques,” GPU Gems, Addison Wesley,

pp 375-390, 2004.

[5] Grabner, M., Grabner, H., and Bischof, H.,

“Fast approximated SIFT,” ACCV 2006,

LNCS, Vol. 3851, pp 918–927, 2006.

[6] Bay, H., Tuytelaars, T., and Gool, L. V.,

“SURF: Speeded Up Robust Features,” ECCV

2006, LNCS, Vol. 3951, pp 404-417, 2006.

[7] Harris, M., Sengupta, S., and Owens, J. D.

“Parallel prefix sum (scan) with CUDA,” In

Nguyen, H., ed., GPU Gems 3. Addison

Wesley, 2007.

[8] NVIDIA CUDA C Programming Guide, Ver.

4.0, 2011.

[9] Harris, M., Sengupta, S., and Owens, J.D.,

“Parallel Prefix Sum (Scan) with CUDA,”

GPU Gems 3, H. Nguyen, Addison-Wesley,

Ch. 31, Aug. 2007.

[10] Kogge, P. M. and Stone, S. S., “A Parallel

Algorithm for the Efficient Solution of a

General Class of Recurrence Equations,”

IEEE Trans. on Computers, Vol. C-22, No. 8,

pp 786-793, 1973.

[11] CUDA Data Parallel Primitives Library,

http://code.google.com/p/cudpp

Journal of Korea Game Society JKGS ❙77

― Bandwidth Efficient Summed Area Table Generation for CUDA―

하 상 원 (Ha, Sang-Won)

2003 연세대학교 기계전자공학부 정보산업전공 학사

2006 연세대학교 컴퓨터과학과 석사

2006-현재 연세대학교 컴퓨터과학과 박사과정

관심분야 : 컴퓨터 그래픽스 SW/HW, GPGPU,

병렬처리 알고리즘

최 문 희 (Choi, Moon-Hee)

1999 덕성여자대학교 전산학과 학사

2001 연세대학교 컴퓨터과학과 석사

2007 연세대학교 컴퓨터과학과 박사

2007-현재 삼성전자 무선사업부 책임연구원

관심분야 : 모바일 그래픽스 SW/HW, 모바일 GPU

전 태 준 (Jun, Tae-Joon)

2009-현재 연세대학교 컴퓨터과학과 재학

관심분야 : GPGPU, 데이터 마이닝

김 진 우 (Kim, Jinwoo)

2006 상명대학교 소프트웨어전공 학사

2007-현재 연세대학교 컴퓨터과학과 석박통합과정

관심분야 : 컴퓨터 그래픽스 SW/HW, GPGPU,

렌더링 알고리즘

변 혜 란 (Byun, Hyeran)

1980 연세대학교 수학과 학사

1983 연세대학교 수학과 석사

1993 Purdue Univ. 컴퓨터과학과 박사

1995-현재 연세대학교 컴퓨터과학과 교수

관심분야 : 패턴 인식, 영상 처리, 영상 인식

한 탁 돈 (Han, Tack-Don)

1978 연세대학교 전자공학과 학사

1983 Wayne State Univ. 석사

1987 Univ. of Massachusetts at Amherst 컴퓨터공학과

박사

1989-현재 연세대학교 컴퓨터과학과 교수

관심분야 : 고성능 컴퓨터 구조, 미디어 시스템 구조,

HCI(Human Computer Interface),

유비쿼터스 컴퓨팅

