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요  약

합산 영역 테이블은 모든 픽셀에 대해 임의의 크기 사각영역의 이미지 필터링 처리를 일정 
시간 안에 가능케 한다. 이러한 특성은 각각의 픽셀에 대해서 주변 픽셀의 밝기의 합 혹은 평
균을 필요로 하는 이미지 처리 적용 분야에 유용하게 쓰일 수 있다. 합산 영역 테이블의 생성
은 단지 행 혹은 열 단위의 합만을 구하는 메모리 바운드 작업임에도 불구하고 기존 연구들은 
이미 존재하는 데이터 병렬성만을 활용하기 위하여 대기 시간이 긴 전역 메모리에 과도한 접근
을 하여야만 했다. 본 논문에서는 입력 데이터를 정방의 서브 이미지로 분할하고 매개 데이터
를 이들 간에 파급시킴으로써 GPGPU 환경 적합한 알고리즘을 제안하고자 한다. 이를 통하여 
기존 방법 대비 전역 메모리 접근 량을 거의 반으로 줄임으로써 주어진 메모리 대역폭을 효율
적으로 사용한다. 결과에서도 성능이 대폭 향상되었다.

ABSTRACT

Summed area table allows filtering of arbitrary-width box regions for every pixel in 
constant time per pixel. This characteristic makes it beneficial in image processing 
applications where the sum or average of the surrounding pixel intensity is required. 
Although calculating the summed area table of an image data is primarily a memory 
bound job consisting of row or column-wise summation, previous works had to endure 
excessive access to the high latency global memory in order to exploit data parallelism. 
In this paper, we propose an efficient algorithm for generating the summed area table in 
the GPGPU environment where the input is decomposed into square sub-images with 
intermediate data that are propagated between them. By doing so, the global memory 
access is almost halved compared to the previous methods making an efficient use of the 
available memory bandwidth. The results show a substantial increase in performance.

Keywords : Summed area table(합산 영역 테이블), Integral Map(적분 맵), GPGPU(지피지피유), 

Parallel Prefix Scan(병렬 프리픽스 스캔), Parallel Algorithm(병렬 알고리즘)

Received: Agu. 31, 2012  Accepted: Sept. 27, 2012  

Corresponding Author: Tack-Don Han(Yonsei University)

E-mail: hantack55@gmail.com 

ISSN: 1598-4540

Ⓒ The Korea Game Society. All rights reserved. This is an 

open-access article distributed under the terms of the Creative 

Commons Attribution Non-Commercial License 

http://creativecommons.otg/licenses/by-nc/3.0), which permits 

unrestricted non-commercial use, distribution, and reproduction in 

any medium, provided the original work is properly cited.



68 ❙ Journal of Korea Game Society 2012 Oct; 12(5): 67-78

― CUDA를 이용한 효율적인 합산 영역 테이블의 생성 방법―

1. Introduction

Originally devised as an alternative to mip 

mapping, the usage of summed area table has 

been extended to various types of blur filtering 

to increase the realism in 3D graphics. 

With the minuscule additional overhead of 

generating the summed area table, the sum of 

an arbitrary rectangular region for all the 

pixels of an image can be simply calculated by 

a few addition operations per pixel during 

run-time. This can be used to filter regions of 

different size for every pixel in constant time 

per pixel, invariant of the region size.

There are numerous applications for summed 

area table including anti-aliasing[1], image 

filtering[2] environmental mapping[3], and 

depth of field[4]. Moreover, feature tracking 

applications[5,6] in augmented reality use 

summed area table as a way to filter the 

image to make the edges more prominent and 

suitable for feature candidates.

The rest of the paper is organized as the 

following. Section 2 briefly describes previous 

related work. Then in section 3, fundamental 

idea behind summed area table and issues 

regarding GPU implementation is given. 

Section 4 proposes our memory bandwidth 

efficient algorithm. Section 5 demonstrates the 

experimental results of the proposed algorithm 

and makes comparison against previous 

implementations. Finally, we draw to a 

conclusion in section 6 and express future 

related work.

2. Related Work

Crow[1] invented the concept of summed 

area table to find a more accurate value for 

anti-aliasing mapped texture. Because the main 

concern was on the quality of the output 

image, he had inconclusive results on the 

computation time.

Hensley et. al.[3] extended the application of 

the summed area table to creating glossy and 

transparent surfaces at interactive rates. 

However, they employed a work-inefficient 

method of recursive doubling to calculate the 

prefix scan.

Harris et. al.[7] described summed area table 

as an example of their work-efficient parallel 

prefix scan. In order to maintain global 

memory coalescing when fetching data in 

vertical columns, they transposed the image so 

that the columns can be processed horizontally.

In this paper, we present a novel method of 

generating the summed area table. All 

accesses to the global memory are coalesced 

and the total amount is reduced by nearly half 

compared to previous methods. In addition, the 

performance can be optimized for various 

graphics hardware by modulating the data 

processed per thread-block, a tradeoff between 

communication time and memory latency 

hiding capability.

3. Summed Area Table and GPU

3.1 Summed Area Table 

The summed area table contains the sum of 

the pixel values from the lower left corner of 

an image to the location of the current pixel 

for all pixels. The sum of the pixel values for 

an axis-aligned rectangular region, as shown
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[Fig. 1] Calculation of summed area from table

by the blackened area in [Fig. 1], can be 

found by simply taking the value at (Xr, Yt) 

and subtracting the values at (Xl, Yt) and (Xr, 

Yb) followed by adding the value at (Xl, Yb). 

This is true because the integral of the (Xl, 

Yb, Xr, Yt) region equals the integral of (0, 0, 

Xr, Yt) minus the integrals of regions (0, 0, Xl, 

Yt) and (0, 0, Xr, Yb) and then adding the 

integral for (0, 0, Xl, Yb) since the hatched 

area has been subtracted twice. Similarly, the 

average of the target region can be found by 

calculating the sum and then dividing by the 

area of the region.

3.2 GPGPU

The GPU is a commodity hardware which 

provides performance rivaling that of a 

supercomputer at a fraction of the cost. It is 

composed of a highly parallel architecture 

which leverages between the cost-effective 

single-instruction-multiple-data(SIMD) design 

and the programmable flexibility of the 

multiple-instruction-multiple-data(MIMD) 

design. In respect to that matter, it resembles 

more of a single-program-multiple-data 

(SPMD) model. The SIMD characteristic of the 

GPU is realized by a method called 

single-instruction-multiple-thread(SIMT) where 

a batch of cooperatively synchronized 

computation units called scalar processors(SP) 

execute identical instruction at any given time. 

This batch is named streaming multiprocessor 

(SM) and is composed of a fixed number of 

SPs. On the other hand, each of the SMs are 

completely exclusive of each other in terms of 

instruction dispatch and execution. Therefore, 

SPMD property is achieved.

As there may be thousands of SPs present 

on a GPU, supplying the appropriate data to 

the computation core is a critical issue. In the 

current GPU, memory is organized in a 

hierarchical structure to alleviate the 

bandwidth problem[8].

The global memory which may be used as 

a communication channel between all the 

cores, provides huge storage space reaching up 

to 3GB. However, the latency can be up to 

hundreds of cycles per memory fetch. 

Therefore, it is more widely used as a medium 

for initial transfer of data from the host 

memory to the SPs and returning the final 

results back to the host. In order to increase 

the performance of the global memory 

subsystem, the GPU employs a method called 

coalescing. Here, memory fetch is made in 

units of 128-byte aligned contiguous memory 

block. If all the SPs within a SM can be 

serviced by a block, access is compacted into 

a single transaction. However, if data required 

by a SM spans across multiple blocks, the 

access are serialized, thus fracturing coalescing 

and degrading performance. As global memory 

is the slowest component in a GPU by 

hundreds of times than any other units, loss of 

coalesced access has the greatest impact on 

the overall performance and even discourages 
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GPU parallelization all together.

The second type of memory in the GPU is 

the shared memory. It is a low latency 

memory built into every SM and is utilized as 

a means to transfer data between SPs within 

a SM. Most applications implemented on the 

GPU depend heavily on it for fast storage. 

However, the size of the shared memory is 

restrictive to at most 48KB per SM. In 

addition, it is one of the limiting factors on 

how many logical kernels, called warps, can be 

resident on a SM at a time. The number of 

resident warps equates to the chances of 

hiding memory latencies and branch overhead. 

Therefore, careful negotiation between the 

amount of shared memory usage and making 

efficient use of the available memory resources 

is critical in obtaining optimal performance.

Lastly, the private memory is exclusive to a 

particular SP and usually used as a per-thread 

cache substitute or storing temporary data. 

There are other types of memory such as 

constant or local memory but are seldomly 

used.

Except for operations which involve usage 

of the special function unit, the throughput of 

computation units is one or two cycles per 

instruction. On the other hand, strict criteria, 

such as avoidance of memory bank conflict or 

instruction-level parallelism, must be met to 

achieve comparable performance from the 

on-chip memory subsystem such as shared 

memory or registers[9]. Thus, implementations 

on the GPU must be memory bound and try 

to make the memory access pattern and 

bandwidth as optimal as possible.

3.3 Image Transpose Method

The generation of the summed area table in 

GPGPU environment typically incorporates a 

two-pass algorithm. On the first pass, each 

row of the image is prefix scanned individually 

and stored in 2D array format. On the second 

pass, the stored values are prefix scanned by 

columns. However, a straightforward 

implementation as mentioned would hamper 

performance, because a typical GPU performs 

transaction on the global memory in chunks of 

fixed-size bytes usually between 32 to 128 

bytes. Therefore, executing prefix scan on the 

columns would require long strides through the 

memory where each transaction would result 

in most of the fetched data to be discarded 

from non-coalesced reads.

Harris et. al.[7] solved this problem by 

transposing the 2D array after the row-wise 

scan. This way, the second pass can be made 

on rows of data instead of the columns and 

still have the same effect.

The image transpose method proposed by 

Harris et. al initiates by de-interlacing the 

input 8-bit per channel RGBA to four 32-bit 

floating point values. This is due to the fact 

that the GPU is optimized for processing 

32-bit floating point values streaming through 

the hardware’s pixel pipeline[8]. As such, they 

tried to use the most proficient data type. 

Afterwards, prefix scan is performed on the 

row-wise fashion. In another words, each row 

is scanned independent of other rows. The 

method incorporated in the parallel prefix scan 

algorithm is known as recursive doubling[10] 

devised by Kogge and Stone. At the added 

cost of O(nlogn) computations, this method 

reduces the original O(n) processing time to 

O(logn) if enough parallel processors are 
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available.

Thereafter, the image is transposed. The 

input image data is partitioned into 

sub-images of 16x16 pixels to be processed by 

each thread-block consisting of 256 threads 

which equates to one thread per pixel. 

Appropriate sub-image for each thread-block 

is loaded from the global memory and 

transposed within the shared memory. Then, 

the processed sub-image stored with the x 

and y axis swapped in the global memory 

space.

Lastly, the first phase of row-wise parallel 

prefix scan is repeated on the transpoed image 

data. The resulting summed area table is 

transposed compared to the desired orientation. 

Therefore, when accessing the generated 

summed area table, the x and y coordinates 

must be swapped to obtain the correct value.

4. Proposed Method

Performance of the applications implemented 

on the GPU are usually bound by the amount 

of memory access and the efficiency of the 

access pattern. This is because the device 

memory is the slowest component in the GPU 

in addition to the fact that the memory 

subsystem is optimized for bandwidth rather 

than latency unlike the host memory. 

Assuming one byte per pixel, the previous 

method of transposing the image to maintain 

global memory coalescing requires 2*w*h 

accesses each for row-wise scan, transpose, 

and column-wise scan for a total of 6*w*h 

where w and h are width and height in pixels 

of the image respectively. This amounts to the 

image being accessed recursively six times. 

[Fig. 2] The proposed divide and conquer method. 

The input data is evenly divided between multiple 

thread blocks which perform row and column-wise 

summation.  

 

In order to minimize the duplicative memory 

access to the high latency global memory, we 

propose a four-pass algorithm suitable for 

GPU architectures where the image is 

uniformly divided into square sub-images of 

b2 pixels per thread-block. A small value for 

b means relatively less pixels are processed by 

a thread-block causing higher number of 

overall partial sums to be created which 

translates to increased communication 

overhead. A high value for b lowers the 

overhead but since fewer thread-blocks are 

created, the GPU has less resident 

thread-blocks to rotate through to hide 

memory latencies.

During the first pass, each thread-block 

sums each column and row of the assigned 2D 

input data towards the upper and right edge, 

respectively. The summed row and column 

data of each thread-block is collected into 

separate arrays. The second pass performs 
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[Fig. 3] The overall algorithmic view of the proposed three-pass summed area table. Each thread-block 

performs row and column-wise prefix sum on the sub-image in parallel in (a). The second pass is 

composed of prefix scanning the row-wise (b) and column-wise partial sums (c). Also, collecting, 

scanning, and propagating pivot values (d) is processed during the second pass. In the third pass, each 

thread-block references the row and column-wise partial sums from the adjacent thread-blocks to the 

left and lower thread-blocks to complete the whole computation.

prefix sum on the combined row and column 

data. In addition, pivot values which rest at 

the corners of where four adjacent 

thread-blocks exist are collected and prefix 

scanned. The resulting scanned data contain 

the row and column-wise sums up to every 

thread-block. The third pass scans the 2D 

input data which was originally assigned to a 

particular thread-block. Lastly, the result of 

the third pass is propagated with the results   

 

from the second pass to produce the final 

summed area table. The schematics are 

illustrated in [Fig. 2].

The first pass is comprised of a grid of 2D 

thread-blocks in (w/b)×(h/b) assignment 

operating in parallel. Each thread-block is 

allocated a b×b  sub-image. The cooperative 

threads execute parallel prefix scan to compute 

the partial sum of the pixel values for 

individual rows and columns. The resulting 
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2*b elements are stored in two separate 1D 

arrays (row- and column-wise partial sums 

arrays) for all thread-blocks. The array is 

logically partitioned into b  elements per 

segment where the segments are ordered in 

the same consecutive order as the thread-block 

index number. For example, a thread-block at 

(x, y) engages writing to row-wise array 

starting at index w*y+b*x. Note that the 

partial sums array for the column-wise sums 

is also a 1D array so the global memory 

access can be coalesced.

On the second pass, a single thread-block is 

utilized since concurrency is only guaranteed 

within a single thread-block through barrier 

synchronization. First, the threads load the 

array for the row-wise partial sums created in 

the previous pass. Exclusive scan is performed 

on the array and stored back to the global 

memory. Afterwards, the column-wise partials 

sums array is processed similarly. The vital 

portion of the second pass is generating the 

pivot values which serve as the storage for 

the sum up to the lower left thread-block 

relative to the current thread-block position on 

the input image. The pivot values are acquired 

from the last values of the column-wise 

partial sums from each thread-block. These 

pivot values are then scanned and propagated 

to the column-wise sums which belong to the 

adjacent thread-block to the right.

The third pass facilitates multiple 

thread-blocks again. The pixel values for the 

allocated sub-image is loaded along with the 

2b  elements pertaining to the relative position 

of the thread-block in the row-wise and 

column-wise partial sums arrays. This time 

inclusive scan in both directions is performed 

on allocated sub-image and the partial sums 

are added accordingly. The overall algorithm is 

demonstrated in Figure 3 and the pseudo code 

is given in [Fig. 4].

The proposed method requires w * h + 2 * w * h / b  

accesses for the first pass (reduction), 4*w*h/b 

accesses for  the second pass (partial  sum 

scan),  and 2 * w * h + 2 * w * h / b  accesses for the

[Fig. 4] Pseudo code for generating the summed 

area table for the proposed method. The method 

is composed of four phases or kernel calls, each 

executed in the given order.
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third pass (scan). The total accumulates to 

3*w*h+8*w*h/b. Therefore, as long as b>2, the 

amount of global memory access is reduce 

compared to Harris’ method.

The implementation of the proposed 

implementation algorithm is restricted by the 

amount of usable shared memory available on 

a SM. In order to support arbitrary sized 

sub-image, we fixed the concurrent internal 

processing task to 32x32 sub-image in order 

to minimize the memory footprint. Then, the 

assigned sub-image is processed in a patch 

32x32 in size at a time recursively to reduce 

or scan the whole input sub-image.

The internal processing size of 32x32 was 

selected based on the shared memory available 

on the commodity GPU which ranges from 

16KB to 48KB. More importantly, the prefix 

scan employed is work inefficient although the 

depth is optimal. Therefore, increasing the 

input data size when even more memory is 

available will hinder the execution performance 

with O(nlogn) work complexity. On the other 

hand, decreasing the input data size below the 

SIMD data width of 32 specified as the warp 

size in the GPU will only cause parts of the 

data path to be idle and have no effect 

performance-wise.

The shared memory is divided into banks of 

equal size to concurrently supply data to the 

multiple cores with access demands without 

delay. However, memory bank conflict will 

cause the access to be serialized causing 

performance to degrade substantially. 

Therefore, we mapped the data into the shared 

memory so that every thread in any warp will 

be assigned to a different memory bank. This 

is accomplished by padding the actual image 

data with empty padded region to avoid shared 

memory bank conflict during the column-wise 

scans. Otherwise, every SM must endure 

maximum amount of serialization due to bank 

conflicts. Since the warp size is 32 threads, 

each shared memory access will be subject to 

32 times the original latency of the memory.

As for the cooperative threads working on 

prefix scanning the 2D sub-image allotted to 

each thread-block, we employ Kogge-Stone 

style graph of which the depth is equal to the 

theoretical lower bound. However, 

Kogge-Stone style graphs require 2
d less 

computations as each depth of the graph is 

traversed. Thus, branching instructions must 

be employed to mask out illegal memory 

accesses. However, these instructions can be 

avoided by appending padding zones for 

useless threads to simply spill onto them. In 

addition, data is partitioned into segments 

equal to the SIMD width, therefore, barrier 

synchronization can also be removed.

5. Experimental Results

The benchmark system was composed of 

AMD FX6100 CPU running at 3.3GHz with 

8GB of memory. It was also equipped with a 

dedicated NVIDIA GeForce GTX580 with 3GB 

of device memory for undivided parallel 

processing. This hardware is equipped with 16 

SMs each of which facilitates 32 SPs for a 

total of 512 cores. The memory subsystem is 

capable of transferring 192.4GB of data to 

those cores per second.

The measurement of the execution time was 

achieved with the help of the Visual Profiler 
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provided with the NVIDIA CUDA Toolkit. The 

tool supports measurements in microsecond 

accuracy and also produces useful statistics 

such as peak memory bandwidth, shared 

memory conflict percentage, and hardware 

occupancy.

The input image was generated with 

random pixel values to simulate arbitrary 

images and the color space was converted to 

gray-scale, because most applications of the 

summed area table uses this color space to 

either reduce memory/computation amount or 

application specific characteristics such as 

making edges more prominent in image 

processing applications.

[Fig. 5] Performance comparison between the 

serial CPU execution, image transpose method by 

Harris and the proposed method.

Since the image transpose method devised 

by Harris et el. is publically available on the 

web as part of the CUDPP library[11], we 

utilized it with minimal modifications for our 

benchmark. The input data, as stated above, 

has been reduced to a single channel and 

performance was measured using the NVIDIA 

Visual Profiler.

The experiment started out at an image size 

of 64x64 and was increased to 2048x2048. The 

image transpose method showed a noticeable 

performance drop past 1024x2048. This is due 

to the extra burden of splitting the input data 

into manageable size and combining the partial 

results to achieve the global summed area 

table. As expected, the experiments past 

2048x2048 only showed results that had 

considerable gap between the throughput of 

the previous and the proposed method.

[Fig. 5] depicts the comparison results of 

the summed area table generated by serially 

executing on the CPU, the previous method of 

image transposing devised by Harris, and the 

proposed parallel thread-block based divide and  

conquer method. The serial CPU execution 

showed a steady throughput while the other 

two parallel implementations (previous and 

proposed) exhibited log based performance 

saturation as is known as the theoretical 

speedup of parallel machines.

The graph shows that the generation of the 

summed area table is an application of the 

GPU which is completely memory bound. 

Although the proposed method requires 

noticeably more computations during memory 

address calculations and thread assignment, the 

reduction in global memory access hides most 

of the computation overhead. In our tests, the 

proposed algorithm was up to 2.5 times faster 

in the small problem set (under 256x256 image 

size) and up to twice as fast compared to the 

previous method in the large problem set (over 

256x256 image size).
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6. Conclusion 

We have presented a technique of 

generating summed-area table efficiently on 

GPGPU environment. By incorporating divide 

and conquer method, the access to the global 

memory was reduced by almost half compared 

to the previous methods. This is achieved by 

incorporating intermediate values which are 

transmitted between thread-blocks working on 

square sub-images. In addition, pivot values 

are also transmitted between the intermediate 

values so that each thread-block has the 

necessary information falling between the 

current sub-image and the starting point of 

the input image.

The benchmark tests executed on the high 

performance commodity GPU showed that 

efficient access pattern of the proposed system 

results in increased performance in generating 

the summed area table.
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