Abstract
Fixtures such as bushings in terminations of high temperature superconducting(HTS) power cable systems are subjected to high voltages, which have to transition from ambient to cryogenic temperatures. As such it is imperative to ensure the integrity of the dielectrics under all operating conditions, including thermal aspects brought about by the passage of current. Gaseous helium(GHe) at high pressure is regarded as a potential coolant for superconducting cables. The dielectric aspects of cryogenic helium gas are both complex and demanding. In this experimental study we looked at the interface between a smooth epoxy surface and high pressure helium gas in a homogeneous electric field. The alternating current(AC) flashover voltages of epoxy samples are presented. The results have been analyzed by using Weibull statistics. In addition to the behavior of the epoxy in gaseous helium as a function of pressure and temperature we also present data of the characteristics of the epoxy in mineral oil and in liquid nitrogen($LN_2$). The breakdown characteristics of a uniform field gap in gaseous helium as a function of pressure and temperature under AC, direct current(DC) and lightning impulse voltages are also given. Electric field calculations have been made for one of the experimental geometries in an attempt to explain some of the anomalies in the experimental results.