DOI QR코드

DOI QR Code

Cultivation of Chlorella sp. under Different Aeration Conditions Illuminated by Light Emitting Diode

LED 조명을 이용한 광생물 반응기에서 공기 주입량에 따른 클로렐라 성장 연구

  • Choi, Bo-Ram (Department of Environmental Engineering, Pukyong National University) ;
  • Lee, Tae-Yoon (Department of Environmental Engineering, Pukyong National University)
  • Received : 2012.08.14
  • Accepted : 2012.08.27
  • Published : 2012.08.31

Abstract

The purpose of this study was to determine optimum value of aeration rate for the cultivation of Chlorella sp. under illumination of red light emitting diode. The aeration rates varied from 0 to 2.4 vvm under the illumination of 4,400 lux of red light emitting diode. The highest specific growth rate of $1.51\;day^{-1}$ was obtained at the aeration of 0.7 vvm and lower specific growth rates were obtained for other aeration tests. Furthermore, the highest biomass concentration (1.02 g/L) was also obtained at the aeration of 0.7 vvm. Therefore, aeration of 0.7 vvm was determined to be the optimum aeration rate for the cultivation of Chlorella sp. under red light emitting diode.

Keywords

References

  1. Kim, Y. S., J. S. Kim, and S. Kim (2008) Status and prospect of biodiesel as a renewable energy in Korea. KIC News 11: 1-10.
  2. Seo, Y. W. (2008) Recent status and prospect of hydrogenated biodiesel production. KIC News 11: 35-45.
  3. Hamagata, N., T. Takeuchi, Y. Fukuju, D. J. Barnes, and I. Karube (1992) Tolerance of microalgae to high $CO_2$ and high temperature. Phytochem. 31: 3345-3348. https://doi.org/10.1016/0031-9422(92)83682-O
  4. Hamasaki, A., N. Shioji, Y. Ikuta, Y. Hukuda, T. Makita, K. Hirayama, H. Matuzaki, T. Tukamato, and S. Sasake (1994) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas. Appl. Biochem. Biotechnol. 45: 799-809. https://doi.org/10.1007/BF02941850
  5. Laws, E. A. and L. Berning (1991) A study of the energetics and economics of microalgal mass culture with the marine chlorophyte Tetraselmis suecica: Implications for use of power plant stack gases. Biotech. Bioeng. 37: 936-947. https://doi.org/10.1002/bit.260371007
  6. Joen, S. M., I. H. Kim, J. M. Ha, and H. Lee (2008) Overview of technology for fixation of carbon dioxide using microalgae. J. Korean Ind. Eng. Chem. 19: 145-150.
  7. Karube, I., T. Takeuchi, and J. Barnes (1992) Biotechnological reduction of $CO_2$ emissions. Adv. Biochem. Eng. Biotechnol. 46: 63-79.
  8. Shon, Y. H., K. S. Nam, and K. Kim (2004) Cancer chemopreventive potential of Scenedesmus cultured in medium based on swine wastewater. J. Microbiol. Biotechnol. 14: 158-161.
  9. Stauber, J. L. (1998) Toxicity of chlorate to marine microalgae. Aquat. Toxicol. 41: 213-227. https://doi.org/10.1016/S0166-445X(97)00087-8
  10. Radmer, R. J. (1996) Algal diversity and commercial algal products. Bioscience 46: 263-270. https://doi.org/10.2307/1312833
  11. Kim, H. N., W. S. Lee, and G. Lee (2004) Size estimation of microalgal system for nitrogen removal. Korean J. Biotechnol. Bioeng. 19: 236-240.
  12. Mata, T. M., A. A. Martins, and N. S. Caetano (2010) Microalgae for biodiesel production and other applications: a review. Renew. Sust. Energ. 14: 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  13. Matsunaga, T., H. Takeyama, H. Sudo, N. Oyama, S. Ariura, H. Takano, M. Hirano, J. G. Burgess, K. Sode, and N. Nakamura (1991) Glutamate production from $CO_2$ by marine cyanobacterium Synechococcus sp. using novel biosolar reactor employing light diffusing optical fivers. Biochem. Biotechnol. 28-29: 157-167. https://doi.org/10.1007/BF02922597
  14. Chen, C. Y., G. D. Saratale, C. M. Lee, P. C. Chen, and J. S. Chang (2008) Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers. Int. J. Hydrogen Energ. 33: 6878-6885. https://doi.org/10.1016/j.ijhydene.2008.09.009
  15. Wang, C. Y., C. C. Fu, and Y. C. Liu (2007) Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem. Eng. J. 37: 21-25. https://doi.org/10.1016/j.bej.2007.03.004
  16. Katsuda, T., A. Lababpour, K. S himahara, and S. Katoh (2004) Astaxanthin production by Haematococcus pluvialis under illumination with LEDs. Enzyme Microb. Technol. 35: 81-86. https://doi.org/10.1016/j.enzmictec.2004.03.016
  17. Lee, C. G. and O. Palsson (1994) High density algal photobioreactors using light emitting diodes. Biotech. Bioeng. 44: 1161-1167. https://doi.org/10.1002/bit.260441002
  18. Lee, T., B. Choi, J. Lee, and J. Lim (2011) Cultivation of Chlorella sp. using light emitting diode. J. Korea Environ. Eng. 33: 591-597. https://doi.org/10.4491/KSEE.2011.33.8.591
  19. Yun, Y. S. and J. M. Park (1997) Development of gas recycling photobioreactor system for microalgal carbon dioxide fixation. Kor. J. Chem. Eng. 14: 297-300. https://doi.org/10.1007/BF02706827
  20. Lee, J., T. Kwon, K. Baek, and J. Yang (2005) Biological fixation of $CO_2$ by Chloreall sp. HA-1 in a semi-continuous and series reactor system. J. Microbiol. Biotechnol. 15: 461-465.
  21. Ichimi, K., S. Meksumpun, and S. Montani (2003) Effects of light intensity on the cyst germination of chattonella sp. (Raphidophyceae). Plankton Biol. Ecol. 50: 22-24.
  22. Lim, J. T., M. G. Cho, and H. Han (1998) Optimal culture conditions for marine Chlorella in a vertical tubular photobioreactor system. J. Korean Fish. Soc. 31: 139-142.

Cited by

  1. Experimental Study to reveal Optimum Condition of CO2Supply Membrane at Photobioreactor vol.19, pp.3, 2014, https://doi.org/10.15435/JILASSKR.2014.19.3.130