DOI QR코드

DOI QR Code

Growth Mechanism and Crystal Ordering of Spherulitic Patterns in a Belousov-Zhabotinsky Type Reaction System

  • Yadav, Narendra (Department of Space Engineering & Rocketry, Birla Institute of Technology) ;
  • Majhi, S.S. (Department of Applied Chemistry, Birla Institute of Technology, Deoghar Campus) ;
  • Srivastava, P.K. (Department of Applied Chemistry, Birla Institute of Technology, Deoghar Campus)
  • Received : 2012.06.13
  • Accepted : 2012.07.25
  • Published : 2012.10.20

Abstract

Three types of spherulitic morphologies have been investigated in dual substrate mode of Belousov-Zhabotinsky (BZ) type reaction system. Prior to growth of spherulites, three distinct patterning behaviors have been observed sequentially during the reaction process. Initial and the early-phase of reaction showed the emergence of concentric ring-like wave patterns. A colloidal-state of reaction consists of numerous fine solid particles, which forms primarily some nucleation centers of dendritic characters. The nucleation centers were found to grow in sizes and shapes with the progress of reaction. It leads to growth of dendritic-like spherulitic crystal patterns. The resultant spherulites showed transitions in their morphologies, including sea-weeds and rhythmic spherulitic crystal patterns, by the effects substituted organic substrate and in the higher concentration of bromate-initiator respectively. The branching mechanism and crystal ordering of spherulitic textures were studied with help of optical microscope (OPM) and scanning electron microscope (SEM). Characteristics of crystal phases were also evaluated using X-ray diffraction (XRD) and differential thermal analysis (DTA). Results indicated that the compositions of reactants and crystal orderings were interrelated with morphological transitions of spherulites as illustrated and described.

Keywords

References

  1. Granasy, L.; Pusztai, T.; Tegze, G.; Warren, J. A.; Douglas, J. F. Phys. Rev. E 2005, 72, 011605. https://doi.org/10.1103/PhysRevE.72.011605
  2. Ferreiro, V.; Douglas, J. F.; Warren, J.; Karim, A. Phys. Rev. E 2002, 65, 51606. https://doi.org/10.1103/PhysRevE.65.051606
  3. Granasy, L.; Pusztai, T.; T. Borzsonyi, T.; Toth, G. I.; Tegze, G.; Warren, J. A.; Douglas, J. F. Philos. Mag. 2006, 86, 3757. https://doi.org/10.1080/14786430500198569
  4. Magill, J. H. J. Mater. Sci. 2001, 36, 3143. https://doi.org/10.1023/A:1017974016928
  5. Hutter, L.; Bechhoefer, J. J. Cryst. Growth 2000, 217, 332. https://doi.org/10.1016/S0022-0248(00)00479-6
  6. Ryschenkow, G.; Faivre, G. J. Cryst. Growth 1988, 87, 221. https://doi.org/10.1016/0022-0248(88)90169-8
  7. Chow, P. S.; Liu, X. Y.; Zhang, J.; Tan, R. B. Appl. Phys. Lett. 2002, 81, 1975. https://doi.org/10.1063/1.1506208
  8. Xu, A. W.; Ma, Y.; Colfen, H. J. Mater. Chem. 2007, 17, 415. https://doi.org/10.1039/b611918m
  9. Anee, T. K.; Palanichamy, M.; Ashok, M. Mat. Lett. 2004, 58, 478. https://doi.org/10.1016/S0167-577X(03)00529-9
  10. Marangoni, A. G.; Ollivon, M. Chem. Phys. Lett. 2007, 442, 360. https://doi.org/10.1016/j.cplett.2007.05.098
  11. Hashimoto, T. Bull. Chem. Soc. Jpn. 2005, 78, 1. https://doi.org/10.1246/bcsj.78.1
  12. Fukami, K.; Nakanishi, S.; Yamasaki, H.; Tada, T.; Sonoda, K.; Kamikawa, N.; Tsuji, N.; Sakaguchi, H.; Nakato, Y. J. Phys. Chem. C 2007, 111, 1150. https://doi.org/10.1021/jp063462t
  13. Oaki, Y.; Imai, H. Cryst. Growth & Des. 2003, 3, 711. https://doi.org/10.1021/cg034053e
  14. Epstein, I. R.; Pojman, J. A.; Steinbock, O. Chaos 2006, 16, 37101. https://doi.org/10.1063/1.2354477
  15. Epstein, I. R.; Showalter, K. J. Phys. Chem. 1996, 100, 13132. https://doi.org/10.1021/jp953547m
  16. Toramaru, A.; Harada, T.; Okamura, T. Physica D 2003, 183, 133. https://doi.org/10.1016/S0167-2789(03)00139-8
  17. Basavaraja, C.; Kim, N. R.; Park, H. T.; Huh, D. S. Bull. Korean Chem. Soc. 2009, 30, 907. https://doi.org/10.5012/bkcs.2009.30.4.907
  18. Salter, L. F.; Sheppard, J. G. Int. J. Chem. Kinet. 1982, 14, 815. https://doi.org/10.1002/kin.550140802
  19. Srivastava, P. K.; Mori, Y.; Hanazaki, I. J. Phys. Chem. 1991, 95, 1636. https://doi.org/10.1021/j100157a025
  20. Field, R. J.; Boyd, P. M. J. Phys. Chem. 1985, 89, 3707. https://doi.org/10.1021/j100263a026
  21. Noyes, R. M. J. Phys. Chem. 1990, 94, 4404. https://doi.org/10.1021/j100374a010
  22. Ruoff, P. J. Phys. Chem. 1984, 88, 1058. https://doi.org/10.1021/j150650a004
  23. Peralta, C.; Frank, C.; Zaharakis, A.; Cammalleri, C.; Testa, M.; Chaterpaul, S.; Hilaire, C.; Lang, D.; Ravinovitch, D.; Sobel, S. G.; Hastings, H. M. J. Phys. Chem. A 2006, 110, 1245.
  24. Yadav, N.; Srivastava, P. K. Cryst. Res. Technol. 2011, 46, 277. https://doi.org/10.1002/crat.201000525
  25. Yadav, N.; Srivastava, P. K. New J. Chem. 2011, 35, 1080. https://doi.org/10.1039/c0nj00798f
  26. Epstein, I. R.; Pojman, J. A. Introduction to Nonlinear Chemical Dynamics; Oxford University Press: New York, 1998.
  27. Gomez, A.; Luque, J. J.; Cordoba, A. Chaos Solitons Fractals 2005, 24, 151. https://doi.org/10.1016/j.chaos.2003.12.106
  28. Beck, R.; Andreassen, J. P. Cryst. Growth Des. 2010, 10, 2934. https://doi.org/10.1021/cg901460g
  29. Kyu, T.; Chiu, H.-W.; Guenthner, A. J.; Okabe, Y.; Saito, H.; Inoue, T. Phys. Rev. Lett. 1999, 83, 2749. https://doi.org/10.1103/PhysRevLett.83.2749
  30. He, Z.; Olley, R. H. Polymer 2000, 41, 1157. https://doi.org/10.1016/S0032-3861(99)00253-0
  31. Okada, T.; Saito, H.; Inoue, T. Polymer 1994, 35, 5699. https://doi.org/10.1016/S0032-3861(05)80044-8
  32. Gunton, J. D.; Miguel, M. S.; Sahni, P. S. Phase Transitions and Critical Phenomena; Academic Press: New York, 1983.
  33. Bowick, M. J.; Chander, L.; Schiff, E. A.; Srivastava, A. M. Science 1994, 263, 943. https://doi.org/10.1126/science.263.5149.943
  34. Wincure, B.; Rey, A. D. Continuum Mech. Thermodyn. 2007, 19, 37. https://doi.org/10.1007/s00161-007-0043-z
  35. Zhang, X.; Wang, G.; Liu, X.; Wu, H.; Fang, B. Cryst. Growth Des. 2008, 8, 1430. https://doi.org/10.1021/cg7011028

Cited by

  1. Nanostructured diffusion-limited-aggregation crystal pattern formation in a reactive microemulsion system vol.5, pp.1, 2012, https://doi.org/10.1088/2043-6262/5/1/015018