DOI QR코드

DOI QR Code

Preparation of SnS Thin Films by MOCVD Method Using Single Source Precursor, Bis(3-mercapto-1-propanethiolato) Sn(II)

  • Received : 2012.06.14
  • Accepted : 2012.07.20
  • Published : 2012.10.20

Abstract

SnS thin films were deposited on glasses through metal organic chemical vapor deposition (MOCVD) method at relatively mild conditions, using bis(3-mercapto-1-propanethiolato) tin(II) precursor without toxic $H_2S$ gas. The MOCVD process was carried out in the temperature range of $300-400^{\circ}C$ and the average grain size in fabricated SnS films was about 500 nm. The optical band gap of the SnS film was about 1.3 eV which is in optimal range for harvesting solar radiation energy. The precursor and SnS films were characterized through infrared spectroscopy, nuclear magnetic resonance spectroscopy, DIP-EI mass spectroscopy, elemental analyses, thermal analysis, X-ray diffraction, and field emission scanning electron microscopic analyses.

Keywords

References

  1. Jackson, P.; Hariskos, D.; Lotter, E.; Paetel, S.; Wuerz, R.; Menner, R.; Wischmann, W.; Powalla, M. Prog. Photovolt: Res. Appl. 2011, Ltd. DOI: 10.1002/pip
  2. Markvart, T.; Castaner, L. Practical Handbook of Photovoltaics: Fundamentals and Applications; Elsevier: Oxford, 2003.
  3. Ashour, A. J. Optoelectron. Adv. Mater. 2006, 8, 1447.
  4. Yin, M.; Wu, C.; Lou, Y.; Burda, C.; Koberstein, J. T.; Zhu, Y.; O'Brien, S. J. Am. Chem. Soc. 2005, 127, 9506. https://doi.org/10.1021/ja050006u
  5. Guo, Q.; Hillhouse, H. W.; Agrawal, R. J. Am. Chem. Soc. 2009, 131, 11672. https://doi.org/10.1021/ja904981r
  6. Minemura, T.; Miyauchi, K.; Noguchi, K.; Ohtsuka, K. Nakanishi, H.; Sugiyama, M. Phys. Status Solidi C 2009, 6, 1221. https://doi.org/10.1002/pssc.200881166
  7. Greyson, E. C.; Barton, J. E.; Odom, T. W. Small 2006, 2, 368. https://doi.org/10.1002/smll.200500460
  8. Ichimura, M. Sol. Energy Mater. Sol. Cells 2009, 93, 375. https://doi.org/10.1016/j.solmat.2008.11.008
  9. Parenteau. M.; Carlone, C. Phys. Rev. B 1990, 41, 5227. https://doi.org/10.1103/PhysRevB.41.5227
  10. Devika, M.; Reddy, N. K.; Ramesh, K.; Sumana, H. R.; Gunasekhar, K. R.; Gopal, E. S.; Reddy, K. T. R. Semicond. Sci. Technol. 2006, 21, 1495. https://doi.org/10.1088/0268-1242/21/10/024
  11. Loferski, J. J. J. Appl. Phys. 1956, 27, 777. https://doi.org/10.1063/1.1722483
  12. Reddya, K. T. R.; Reddya, P. P.; Datta, P. K.; Miles, R. W. Thin Solid Films 2002, 403, 116. https://doi.org/10.1016/S0040-6090(01)01520-6
  13. Cheng, S.; Vonibeer, G. Thin Solid Films 2011, 520, 837. https://doi.org/10.1016/j.tsf.2011.01.355
  14. Nwofe, P.; Ramakrishna Reddy, K.; Sreedevi, G.; Tan, J.; Forbes, I.; Miles, R. Energy Procedia 2012, 15, 354. https://doi.org/10.1016/j.egypro.2012.02.043
  15. Gao, C.; Shen, H.; Sun, L.; Shen, Z. Mater. Lett. 2011, 65, 1413. https://doi.org/10.1016/j.matlet.2011.02.017
  16. Gao, C.; Shen, H.; Sun, L. Appl. Surf. Sci. 2011, 257, 6750. https://doi.org/10.1016/j.apsusc.2011.02.116
  17. Sajeesh, T.; Sherian, A.; Kartha, C.; Vijayakumar, K. Energy Procedia 2012, 15, 325. https://doi.org/10.1016/j.egypro.2012.02.039
  18. Juarez, A. S.; Oritz, A. Semicond. Sci. Technol. 2002, 17, 931. https://doi.org/10.1088/0268-1242/17/9/305
  19. Cho, J. Y.; Jeong, H. C.; Kim, K. S.; Kang, D. H.; Kim, H. K.; Shim, I. W. Bull. Korean Chem. Soc. 2003, 24, 645. https://doi.org/10.5012/bkcs.2003.24.5.645
  20. Kim, H. K.; Jeong, H. C.; Kim, K. S.; Yoon, S. H.; Lee, S. S.; Seo, K. W.; Shim, I. W. Thin Solid Films 2005, 487, 72. https://doi.org/10.1016/j.tsf.2005.01.038
  21. Lee, S. S.; Seo, K. W.; Park, J. P.; Kim, S. K.; Shim, I. W. Inorg. Chem. 2007, 46, 1013. https://doi.org/10.1021/ic061445c
  22. Hoskins, B. F.; Martin, R. L.; Rohde, N. M. Aust. J. Chem. 1976, 29, 213. https://doi.org/10.1071/CH9760213
  23. Potenza, J.; Johnson, R. J.; Masteropaolo, D. Acta Crystallogr. 1976, B32, 941.
  24. Bohn, R. B.; Brabson, G. D.; Andrews, L. J. Phys. Chem. 1992, 96, 1582.
  25. Lee, S. S; Yoon, W. H.; Seo, K. W.; Shim, I. W. Bull. Korean Chem. Soc. 2005, 26, 1453. https://doi.org/10.5012/bkcs.2005.26.9.1453
  26. Yoon, S. H.; Lee, S. S.; Seo, K. W.; Shim, I. W. Bull. Korean Chem. Soc. 2006, 27, 2071. https://doi.org/10.5012/bkcs.2006.27.12.2071
  27. Momose, N.; Htay, M.; Yudasaka, T.; Lgarashi, S.; Seki, T.; Lwano, S.; Hashimoto, Y.; Ito, K. Jpn. J. Appl. Phys. 2011, 50, 01BG09-1.
  28. Tanaka, T.; Nagatomo, T.; Kawasaki, D.; Nishio, M.; Guo, Q.; Wakahara, A.; Yoshida, A.; Ogawa, H. J. Phys. Chem. Solids 2005, 66, 1978. https://doi.org/10.1016/j.jpcs.2005.09.037
  29. Scragg, J.; Ericson, T.; Kubart, T.; Edoff, M.; Bjorkman, C. Chem. Mater. 2011, 23, 4625. https://doi.org/10.1021/cm202379s
  30. Kim, K.; Jeong, H.; Cho, J.; Kang, D.; Kim, H.; Yoo, H.; Shim, I. Bull. Korean Chem. Soc. 2003, 24, 647. https://doi.org/10.5012/bkcs.2003.24.5.647
  31. Seo, K.; Yoon, S.; Lee, S.; Shim, I. Bull. Korean Chem. Soc. 2005, 26, 1582. https://doi.org/10.5012/bkcs.2005.26.10.1582
  32. Seo, K.; Lee, S.; Park, J.; Shim, I. Bull. Korean Chem. Soc. 2006, 27, 2074. https://doi.org/10.5012/bkcs.2006.27.12.2074

Cited by

  1. Synthesis, Characterization and Photocatalytic Performance of SnS Nanofibers and SnSe Nanofibers Derived from the Electrospinning-made SnO2 Nanofibers vol.20, pp.6, 2017, https://doi.org/10.1590/1980-5373-mr-2017-0377
  2. Influence of substrate temperature on the SnS absorber thin films and SnS/CdS heterostructure prepared through aerosol assisted nebulizer spray pyrolysis vol.6, pp.2, 2018, https://doi.org/10.1088/2053-1591/aaed1b
  3. РАСЧЕТ КОНСТАНТ РАВНОВЕСИЙ В СИСТЕМЕ SNCL2-H2O-NAOH ПО ДАННЫМ ПОТЕНЦИОМЕТРИЧЕСКОГО ТИТРОВАНИЯ, "Журнал физической химии" pp.5, 2018, https://doi.org/10.7868/S0044453718050254
  4. Solution volume effect on structural, optical and photovoltaic properties of nebulizer spray deposited SnS thin films vol.29, pp.15, 2018, https://doi.org/10.1007/s10854-018-9409-1
  5. Segregation of chlorine in n-type tin monosulfide ceramics: Actual chlorine concentration for carrier-type conversion vol.112, pp.20, 2018, https://doi.org/10.1063/1.5027679
  6. Calculating Equilibrium Constants in the SnCl2–H2O–NaOH System According to Potentiometric Titration Data vol.92, pp.5, 2018, https://doi.org/10.1134/S0036024418050230
  7. Syntheses of Cu2SnSe3 and Their Transformation into Cu2ZnSnSe4 Nanoparticles with Tunable Band Gap under Multibubble Sonoluminescence Conditions vol.35, pp.8, 2014, https://doi.org/10.5012/bkcs.2014.35.8.2331
  8. Suitability of SnS thin films for photovoltaic application due to the existence of persistent photocurrent vol.253, pp.3, 2012, https://doi.org/10.1002/pssb.201552249
  9. Influence of sulfurization time on two step grown SnS thin films vol.155, pp.None, 2012, https://doi.org/10.1016/j.vacuum.2018.06.011
  10. Fabrication of SnS nanowalls via pulsed plasma-enhanced chemical vapor deposition using a metal-organic single-source precursor vol.7, pp.32, 2012, https://doi.org/10.1039/c9tc02045d
  11. Tin(II) Aminothiolate and Tin(IV) Aminothiolate Selenide Compounds as Single-Source Precursors for Tin Chalcogenide Materials vol.59, pp.6, 2012, https://doi.org/10.1021/acs.inorgchem.9b03369
  12. Vapor Phase Synthesis of SnS Facilitated by Ligand-Driven “Launch Vehicle” Effect in Tin Precursors vol.26, pp.17, 2012, https://doi.org/10.3390/molecules26175367