DOI QR코드

DOI QR Code

Reusable and Efficient Polystryrene-supported Acidic Ionic Liquid Catalyst for Mononitration of Aromatic Compounds

  • Li, Li Xia (School of Environment, Jiangsu University) ;
  • Ling, Qi Long (School of Chemical Engineering, Nanjing University of Science and Technology) ;
  • Liu, Zu Liang (School of Chemical Engineering, Nanjing University of Science and Technology) ;
  • Xing, Xiao Dong (School of Chemical Engineering, Nanjing University of Science and Technology) ;
  • Zhu, Xiao Qin (School of Chemical Engineering, Nanjing University of Science and Technology) ;
  • Meng, Xiao (School of Chemical Engineering, Nanjing University of Science and Technology)
  • Received : 2012.05.19
  • Accepted : 2012.07.22
  • Published : 2012.10.20

Abstract

A series of polystyrene-supported 1-(propyl-3-sulfonate)-3-methyl-imidazolium hydrosulfate acidic ionic liquid (PS-$[SO_3H-PMIM][HSO_4]$) catalysts were prepared and tested for mononitration of simple aromatics compounds with nitric acid. It was found that the reactivity of the catalysts increased with increasing $[SO_3H-PMIM][HSO_4]$ content. The para-selectivity was not only related to the $[SO_3H-PMIM][HSO_4]$ content but also the substituent groups in aromatics. A reaction mechanism of nitration over this new catalyst was proposed. The catalytic activity of this catalyst decreased slightly after fifth runs in the synthesis of nitrotoluene.

Keywords

References

  1. Malysheva Ludmila, V.; Paukshtis Eugene, A.; Ione Kazimira, G. Catalysis Reviews 1995, 37, 179.
  2. Aksenov, A. V.; Lyakhovnenko, A. S.; Perlova, T. S.; Aksenova, I. V. Chem. Heterocycl. Com. 2011, 47, 245. https://doi.org/10.1007/s10593-011-0748-6
  3. Ma, Y.; Wang, L. M.; Shao, J. H.; Tian, H. Current Organic Chemistry 2007, 11, 559. https://doi.org/10.2174/138527207780368201
  4. Laali, K. K.; Gettwert, V. J. J. Org. Chem. 2001, 66, 35. https://doi.org/10.1021/jo000523p
  5. Rajagopal, R.; Srinivasan, K. V. Synth. Commun. 2003, 33, 961. https://doi.org/10.1081/SCC-120016360
  6. Earle, M. J.; Katdare, S. P.; Seddon, K. R. Org. Lett. 2004, 6, 707. https://doi.org/10.1021/ol036310e
  7. Smith, K.; Liu, S.; El-Hiti, G. A. Ind. Eng. Chem. Res. 2005, 44, 8611. https://doi.org/10.1021/ie050047z
  8. Cheng, G. B.; Duan, X. L.; Qi, X. F.; Lu, C. X. Catalysis Communications 2008, 10, 201. https://doi.org/10.1016/j.catcom.2008.08.019
  9. Wang, S. J.; Sun, Z. Y.; Nie, J. Chin. J. Chem. 2008, 26, 2256. https://doi.org/10.1002/cjoc.200890400
  10. Powell, B. D.; Powell, G. L.; Reeves, P. C. Letters in Organic Chemistry 2005, 2, 550. https://doi.org/10.2174/1570178054640859
  11. Qiao, K.; Hagiwara, H.; Yokoyama, C. J. Mol. Catal. A: Chem. 2006, 246, 65. https://doi.org/10.1016/j.molcata.2005.07.031
  12. Wang, P. C.; Lu, M. Tetrahedron Lett. 2011, 52, 1452. https://doi.org/10.1016/j.tetlet.2011.01.053
  13. Fang, D.; Shi, Q. R.; Cheng, J.; Gong, K.; Liu, Z. L. Applied Catalysis A: General 2008, 345, 158. https://doi.org/10.1016/j.apcata.2008.04.037
  14. Amarasekara, A. S.; Owereh, O. S. Catalysis Communications 2010, 11, 1072. https://doi.org/10.1016/j.catcom.2010.05.012
  15. Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundram, K.; Grätzel, M. Inorg. Chem 1996, 35, 1168. https://doi.org/10.1021/ic951325x
  16. Xu, Z. J.; Wan, H.; Miao, J. M.; Han, M. J.; Yang, C.; Guan, G. F. J. Mol. Catal. A: Chem. 2010, 332, 152. https://doi.org/10.1016/j.molcata.2010.09.011
  17. Macintyre, F. S.; Sherrington, D. C.; Tetley, L. Macromolecules 2006, 39, 5381. https://doi.org/10.1021/ma0610010
  18. Wu, Q.; Chen, H.; Han, M. H.; Wang, D. Z.; Wang, J. F. Ind. Eng. Chem. Res. 2007, 46, 7955. https://doi.org/10.1021/ie070678o
  19. Earl, M. J.; Haas, S.; Carl, C. B.; Dell, K. CN1469859A, 2004.
  20. Dagade, S. P.; Waghmode, S. B.; Kadam, V. S.; Dongare, M. K. Applied Catalysis A: General. 2002, 226, 49. https://doi.org/10.1016/S0926-860X(01)00882-1
  21. Lv Chun-xu. Nitration theory. Jiangsu Education Publishing House: Nanjing, 1993.

Cited by

  1. The Use of Supported Acidic Ionic Liquids in Organic Synthesis vol.19, pp.7, 2014, https://doi.org/10.3390/molecules19078840
  2. Acidic Ionic Liquids vol.116, pp.10, 2016, https://doi.org/10.1021/acs.chemrev.5b00763
  3. Prospective Symbiosis of Green Chemistry and Energetic Materials vol.10, pp.20, 2017, https://doi.org/10.1002/cssc.201701053
  4. Reusable and Efficient Polystryrene-Supported Acidic Ionic Liquid Catalyst for the Synthesis of n-Butyl Acetate vol.983, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.983.20
  5. 2‐Methyl‐1,3‐disulfoimidazolium polyoxometalate hybrid catalytic systems as equivalent safer alternatives to concentrated sulfuric acid in nitration of aromatic compounds vol.33, pp.10, 2012, https://doi.org/10.1002/aoc.5146
  6. Graphene oxide supported dicationic ionic liquid: an efficient catalyst for the synthesis of 1-carbamatoalkyl-2-naphthols vol.45, pp.11, 2012, https://doi.org/10.1007/s11164-019-03922-0