References
- Malysheva Ludmila, V.; Paukshtis Eugene, A.; Ione Kazimira, G. Catalysis Reviews 1995, 37, 179.
- Aksenov, A. V.; Lyakhovnenko, A. S.; Perlova, T. S.; Aksenova, I. V. Chem. Heterocycl. Com. 2011, 47, 245. https://doi.org/10.1007/s10593-011-0748-6
- Ma, Y.; Wang, L. M.; Shao, J. H.; Tian, H. Current Organic Chemistry 2007, 11, 559. https://doi.org/10.2174/138527207780368201
- Laali, K. K.; Gettwert, V. J. J. Org. Chem. 2001, 66, 35. https://doi.org/10.1021/jo000523p
- Rajagopal, R.; Srinivasan, K. V. Synth. Commun. 2003, 33, 961. https://doi.org/10.1081/SCC-120016360
- Earle, M. J.; Katdare, S. P.; Seddon, K. R. Org. Lett. 2004, 6, 707. https://doi.org/10.1021/ol036310e
- Smith, K.; Liu, S.; El-Hiti, G. A. Ind. Eng. Chem. Res. 2005, 44, 8611. https://doi.org/10.1021/ie050047z
- Cheng, G. B.; Duan, X. L.; Qi, X. F.; Lu, C. X. Catalysis Communications 2008, 10, 201. https://doi.org/10.1016/j.catcom.2008.08.019
- Wang, S. J.; Sun, Z. Y.; Nie, J. Chin. J. Chem. 2008, 26, 2256. https://doi.org/10.1002/cjoc.200890400
- Powell, B. D.; Powell, G. L.; Reeves, P. C. Letters in Organic Chemistry 2005, 2, 550. https://doi.org/10.2174/1570178054640859
- Qiao, K.; Hagiwara, H.; Yokoyama, C. J. Mol. Catal. A: Chem. 2006, 246, 65. https://doi.org/10.1016/j.molcata.2005.07.031
- Wang, P. C.; Lu, M. Tetrahedron Lett. 2011, 52, 1452. https://doi.org/10.1016/j.tetlet.2011.01.053
- Fang, D.; Shi, Q. R.; Cheng, J.; Gong, K.; Liu, Z. L. Applied Catalysis A: General 2008, 345, 158. https://doi.org/10.1016/j.apcata.2008.04.037
- Amarasekara, A. S.; Owereh, O. S. Catalysis Communications 2010, 11, 1072. https://doi.org/10.1016/j.catcom.2010.05.012
- Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundram, K.; Grätzel, M. Inorg. Chem 1996, 35, 1168. https://doi.org/10.1021/ic951325x
- Xu, Z. J.; Wan, H.; Miao, J. M.; Han, M. J.; Yang, C.; Guan, G. F. J. Mol. Catal. A: Chem. 2010, 332, 152. https://doi.org/10.1016/j.molcata.2010.09.011
- Macintyre, F. S.; Sherrington, D. C.; Tetley, L. Macromolecules 2006, 39, 5381. https://doi.org/10.1021/ma0610010
- Wu, Q.; Chen, H.; Han, M. H.; Wang, D. Z.; Wang, J. F. Ind. Eng. Chem. Res. 2007, 46, 7955. https://doi.org/10.1021/ie070678o
- Earl, M. J.; Haas, S.; Carl, C. B.; Dell, K. CN1469859A, 2004.
- Dagade, S. P.; Waghmode, S. B.; Kadam, V. S.; Dongare, M. K. Applied Catalysis A: General. 2002, 226, 49. https://doi.org/10.1016/S0926-860X(01)00882-1
- Lv Chun-xu. Nitration theory. Jiangsu Education Publishing House: Nanjing, 1993.
Cited by
- The Use of Supported Acidic Ionic Liquids in Organic Synthesis vol.19, pp.7, 2014, https://doi.org/10.3390/molecules19078840
- Acidic Ionic Liquids vol.116, pp.10, 2016, https://doi.org/10.1021/acs.chemrev.5b00763
- Prospective Symbiosis of Green Chemistry and Energetic Materials vol.10, pp.20, 2017, https://doi.org/10.1002/cssc.201701053
- Reusable and Efficient Polystryrene-Supported Acidic Ionic Liquid Catalyst for the Synthesis of n-Butyl Acetate vol.983, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.983.20
- 2‐Methyl‐1,3‐disulfoimidazolium polyoxometalate hybrid catalytic systems as equivalent safer alternatives to concentrated sulfuric acid in nitration of aromatic compounds vol.33, pp.10, 2012, https://doi.org/10.1002/aoc.5146
- Graphene oxide supported dicationic ionic liquid: an efficient catalyst for the synthesis of 1-carbamatoalkyl-2-naphthols vol.45, pp.11, 2012, https://doi.org/10.1007/s11164-019-03922-0