DOI QR코드

DOI QR Code

Enhanced Gas Sensing Properties of Bi2O3-Core/In2O3-Shell Nanorod Gas Sensors

  • Park, Sung-Hoon (Department of Materials Science and Engineering, Inha University) ;
  • An, So-Yeon (Department of Materials Science and Engineering, Inha University) ;
  • Ko, Hyun-Sung (Department of Materials Science and Engineering, Inha University) ;
  • Jin, Chang-Hyun (Department of Materials Science and Engineering, Inha University) ;
  • Lee, Chong-Mu (Department of Materials Science and Engineering, Inha University)
  • Received : 2012.06.22
  • Accepted : 2012.07.20
  • Published : 2012.10.20

Abstract

The $Bi_2O_3$ nanowires are highly sensitive to low concentrations of $NO_2$ in ambient air and are almost insensitive to most other common gases. However, it still remains a challenge to enhance their sensing performance and detection limit. This study examined the influence of the encapsulation of ${\beta}-Bi_2O_3$ nanorods with $In_2O_3$ on the $NO_2$ gas sensing properties. ${\beta}-Bi_2O_3-core/In_2O_3-shell$ nanorods were fabricated by a two-step process comprising the thermal evaporation of $Bi_2O_3$ powders and sputter-deposition of $In_2O_3$. Multiple networked ${\beta}-Bi_2O_3-core/In_2O_3-shell$ nanorod sensors showed the responses of 12-156% at 1-5 ppm $NO_2$ at $300^{\circ}C$. These response values were 1.3-2.7 times larger than those of bare ${\beta}-Bi_2O_3$ nanorod sensors at 1-5 ppm $NO_2$. The enhancement in the response of ${\beta}-Bi_2O_3$ nanorods to $NO_2$ gas by the encapsulation by $In_2O_3$ can be accounted for based on the space-charge model.

Keywords

References

  1. Cabot, A.; Marsal, A.; Arbiol, J.; Morante, J. R. Sens. Actuators B 2004, 99, 74. https://doi.org/10.1016/j.snb.2003.10.032
  2. Fruth, V.; Popa, M.; Berger, D.; Ramer, R.; Gartner, M.; Ciulei, A.; Zaharescu, M. J. Eur. Ceram. Soc. 2005, 25, 2171.
  3. Fan, H. T.; Teng, X. M.; Pan, S. S.; Ye, C.; Li, G. H.; Zhang, L. D. Appl. Phys. Lett. 2005, 87, 231916. https://doi.org/10.1063/1.2136351
  4. Thayer, R. L.; Randall, C. A.; Trolier-McKinstry, S. J. Appl. Phys. 2003, 94, 1941. https://doi.org/10.1063/1.1590415
  5. Sardar, K.; Fang, T.; Yang, T. W. J. Am. Ceram. Soc. 2007, 90, 4033.
  6. Gujar, T. P.; Shinde, V. R.; Lokhande, C. D.; Han, S. H. J. Power Sources 2006, 161, 1479. https://doi.org/10.1016/j.jpowsour.2006.05.036
  7. Zhou, L.; Wang, W.; Xu, H.; Sun, S.; Shang, M. Chem. Eur. J. 2009, 15, 1776. https://doi.org/10.1002/chem.200801234
  8. Shen, G.; Chen, P.; Ryu, K.; Zhou, C. J. Mater. Chem. 2009, 19, 828. https://doi.org/10.1039/b816543b
  9. Kim, H. W.; Myung, J. H.; Shim, S. H. Solid State Commun. 2006, 137, 196. https://doi.org/10.1016/j.ssc.2005.11.012
  10. Gujar, T. P.; Shinde, V. R.; Lokhande, C. D.; Han, S. H. Mater. Sci. Eng. B 2006, 133, 177. https://doi.org/10.1016/j.mseb.2006.06.025
  11. Qiu, Y.; Liu, D.; Yang, J.; Yang, S. Adv. Mater. 2006, 8, 2604.
  12. Gou, X.; Li, R.; Wang, G.; Chen, Z.; Wexler, D. Nanotechnol. 2009, 20, 495501. https://doi.org/10.1088/0957-4484/20/49/495501
  13. Park, Y. W.; Jung, H. J.; Yoon, S. G. Sens. Actuators B 2011, 156, 709. https://doi.org/10.1016/j.snb.2011.02.023
  14. Lu, Y.; Zhong, J. Norwood; Todd, S., Ed.; Artech House, Inc.: MA, 2004.
  15. Gundiah, G.; Govindaraj, A.; Rao, C. N. R. Chem. Phys. Lett. 2002, 351, 189. https://doi.org/10.1016/S0009-2614(01)01372-0
  16. Zhang, H. Z.; Kong, Y. C.; Wang, Y. Z.; Du, X. Bai, Z. G.; Wang, J. J.; Yu, D. P.; Ding, Y.; Hang, Q. L.; Feng, S. Q. Solid State Commun. 1999, 109, 677. https://doi.org/10.1016/S0038-1098(99)00015-0
  17. Kim, B. C.; Sun, K. T.; Park, K. S.; Im, K. J.; Noh, T.; Sung, M. Y.; Kim, S.; Nahm, S.; Choi, Y. N.; Park, S. S. Appl. Phys. Lett. 2002, 80, 479. https://doi.org/10.1063/1.1435073
  18. Kim, H.; Park, S.; Jin, C.; Lee, C. Nano: Brief Reports and Reviews 2011, 6, 455.
  19. Gao, Y. H.; Bando, Y.; Sato, T.; Zhang, Y. F.; Gao, X. Q. Appl. Phys. Lett. 2002, 81, 2267. https://doi.org/10.1063/1.1507835
  20. Tang, C. C.; Fan, S. S.; de la Chapelle, M. L.; Li, P. Chem. Phys. Lett. 2001, 333, 12. https://doi.org/10.1016/S0009-2614(00)01326-9
  21. Sanchez-Castillo, M. A.; Couto, C.; Kim, W. B.; Dumestic, J. A. Angew. Chem. 2004, 116, 1160. https://doi.org/10.1002/ange.200353238
  22. Jagerszki, G.; Gyurcsányi, R. E.; Hofler, L.; Pretsch, E. Nano Lett. 2007, 7, 1609. https://doi.org/10.1021/nl0705438
  23. Oshima, Y.; Onga, A. Phys. Rew. Lett. 2003, 91, 205503. https://doi.org/10.1103/PhysRevLett.91.205503
  24. Belysheva, T. V.; Bogovtseva, L. P.; Kazachkov, E. A.; Serebryakova, N. V. J. Anal. Chem. 2003, 58, 583. https://doi.org/10.1023/A:1024176505338
  25. Ferro, R.; Rodriguez, J. A.; Bertrand, P. Thin Solid Films 2008, 516, 2225. https://doi.org/10.1016/j.tsf.2007.07.189
  26. Xu, C.; Tamaki, J.; Miura, N.; Yamazoe, N. Sens. Actuators B 1991, 3, 147. https://doi.org/10.1016/0925-4005(91)80207-Z
  27. Zhu, C. L.; Chen, Y. J.; Wang, R. X.; Wang, L. J.; Cao, M. S.; Shi, X. L. Sens. Actuators B 2009, 140, 185. https://doi.org/10.1016/j.snb.2009.04.011
  28. Ogawa, H.; Nishikawa, M.; Abe, A. J. Appl. Phys. 1982, 53, 4448. https://doi.org/10.1063/1.331230
  29. Barsan, N.; Weimar, U. J. Electroceram. 2001, 7, 143. https://doi.org/10.1023/A:1014405811371
  30. Weis, T.; Lipperheide, R.; Wille, U.; Brehme, S. J. Appl. Phys. 2002, 92, 1411. https://doi.org/10.1063/1.1488246

Cited by

  1. Nanowires Sensor Coated with Pd Nanoparticles vol.48, pp.6, 2015, https://doi.org/10.5695/JKISE.2015.48.6.303
  2. Nanoparticles vol.7, pp.15, 2015, https://doi.org/10.1021/acsami.5b00972
  3. Targeted synthesis ultrafine α- and γ-Bi2O3 having different morphologies vol.62, pp.11, 2017, https://doi.org/10.1134/S0036023617110055
  4. Optical properties of Codium tomentosum seaweed like Bi2O3 nanostructure and its gas-sensing activity pp.1862-0760, 2017, https://doi.org/10.1007/s11581-017-2331-3
  5. In2O3 nanostructures: synthesis and chlorobenzene sensing properties vol.4, pp.49, 2014, https://doi.org/10.1039/c3ra46554c
  6. Heat treatment effect on crystal structure and design of highly sensitive room temperature CO2gas sensors using anodic Bi2O3nanoporous formed in a citric acid electrol vol.3, pp.10, 2012, https://doi.org/10.1088/2053-1591/3/10/105025
  7. γ-Bi2O3 - To Be or Not To Be? Comparison of the Sillenite γ-Bi2O3 and Isomorphous Sillenite-Type Bi12SiO20 vol.57, pp.14, 2012, https://doi.org/10.1021/acs.inorgchem.8b01249
  8. In Situ Growth of Leakage-Free Direct-Bridging GaN Nanowires: Application to Gas Sensors for Long-Term Stability, Low Power Consumption, and Sub-ppb Detection Limit vol.19, pp.6, 2012, https://doi.org/10.1021/acs.nanolett.8b04846
  9. From a Cerium-Doped Polynuclear Bismuth Oxido Cluster to β-Bi2O3:Ce vol.59, pp.6, 2012, https://doi.org/10.1021/acs.inorgchem.9b03240