References
- Pryor, W. A. Free Radic. Biol. Med. 2000, 28, 141. https://doi.org/10.1016/S0891-5849(99)00224-5
- Niki, E. Free Radic. Res. 2000, 33, 693. https://doi.org/10.1080/10715760000301221
- Wang, X.; Quinn, P. J. Prog. Lipid Res. 1999, 38, 309. https://doi.org/10.1016/S0163-7827(99)00008-9
- Burton, G. W.; Ingold, K. U. Acc. Chem. Res. 1986, 19, 194. https://doi.org/10.1021/ar00127a001
- Wright, J. S.; Johnson, E. R.; Dilabio, G. A. J. Am. Chem. Soc. 2001, 123, 1173. https://doi.org/10.1021/ja002455u
- Vafiadis, A. P.; Bakalbassis, E. G. Chem. Phys. 2005, 316, 195. https://doi.org/10.1016/j.chemphys.2005.05.015
- Musialik, M.; Litwinienko, G. Org. Lett. 2005, 7, 4951. https://doi.org/10.1021/ol051962j
- Zhang, H. Y.; Ji, H. F. J. Mol. Struct: (Theochem). 2005, 663, 167.
- Zhang, H. Y.; Sun, Y. M.; Wang, X. L. J. Org. Chem. 2002, 67, 2709. https://doi.org/10.1021/jo016234y
- Pratt, D. A.; Dilabio, G. A.; Brigati, G.; Pedulli, G. F.; Valgimigli, L. J. Am. Chem. Soc. 2001, 123, 4625. https://doi.org/10.1021/ja005679l
- Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893. https://doi.org/10.1021/cr020033s
- Litwinienko, G.; Ingold, K. U. J. Org. Chem. 2003, 68, 3433. https://doi.org/10.1021/jo026917t
- Litwinienko, G.; Ingold, K. U. J. Org. Chem. 2004, 69, 5888. https://doi.org/10.1021/jo049254j
- Foti, M. C.; Daquino, C.; Geraci, C. J. Org. Chem. 2004, 69, 2309. https://doi.org/10.1021/jo035758q
- Litwinienko, G.; Ingold, K. U. J. Org. Chem. 2005, 70, 8982. https://doi.org/10.1021/jo051474p
- Vianello, R.; Maksic, Z. B. Tetrahedron 2006, 62, 3402. https://doi.org/10.1016/j.tet.2006.01.049
- Fujio, M.; McIver, R. T., Jr.; Taft, R. W. J. Am. Chem. Soc. 1981, 103, 4017. https://doi.org/10.1021/ja00404a008
- McMahon, T. B.; Kebarle, P. J. Am. Chem. Soc. 1977, 99, 2222. https://doi.org/10.1021/ja00449a032
- Wang, L. F.; Zhang, H. Y. Bioorg. Chem. 2005, 33, 108. https://doi.org/10.1016/j.bioorg.2005.01.002
- Navarrete, M.; Rangel, C.; Corchado, J. C.; Espinosa-Garcia, J. J. Phys. Chem. A 2005, 109, 4777. https://doi.org/10.1021/jp050717e
- Navarrete, M.; Rangel, C.; Espinosa-Garcýa, J.; Corchado, J. C. J. Chem. Theory. Comput. 2005, 1, 337.
- Wayner, D. D. M.; Lusztyk, E.; Ingold, K. U.; Mulder, P. J. Org. Chem. 1986, 61, 6430.
- Nikolic, M. K. J. Mol. Struct: (THEOCHEM) 2007, 818, 141. https://doi.org/10.1016/j.theochem.2007.05.011
- Chen, W.; Song, J.; Guo, P.; Cao, W.; Bian, J. Bioorg. Med. Chem. Lett. 2006, 16, 5874. https://doi.org/10.1016/j.bmcl.2006.08.063
- Lucarini, M.; Pederielli, P.; Pedulli, G. F.; Cabiddu, S.; Fattuoni, C. J. Org. Chem. 1996, 61, 9259. https://doi.org/10.1021/jo961039i
- Klein, E.; Lukes, V.; Ilcin, M. Chem. Phys. 2007, 336, 51. https://doi.org/10.1016/j.chemphys.2007.05.007
- Mohajeri, A.; Asemani, S. S. J. Mol. Struct: (THEOCHEM) 2009, 930, 15. https://doi.org/10.1016/j.molstruc.2009.04.031
- Burton, G. W.; Hughes, L.; Ingold, K. U. J. Am. Chem. Soc. 1983, 105, 5950. https://doi.org/10.1021/ja00356a057
- Burton, G. W.; Doba, T.; Gabe, E. J.; Hughes, L.; Lee, F. L.; Prasad, L.; Ingold, K. U. J. Am. Chem. Soc. 1985, 107, 7053. https://doi.org/10.1021/ja00310a049
- Robillard, B.; Ingold, K. U. Tetrahedron Lett. 1986, 27, 2817. https://doi.org/10.1016/S0040-4039(00)84650-X
- Robillard, B.; Hughes, L.; Slaby, M.; Lindsay, D. A. Ingold, K. U. J. Org. Chem. 1986, 51, 1700. https://doi.org/10.1021/jo00360a013
- Najafi, M.; Haghighi Mood, K.; Zahedi, M.; Klein, E. Comput. Theoret. Chem. 2011, 969, 1. https://doi.org/10.1016/j.comptc.2011.05.006
- Najafi, M.; Zahedi, M.; Klein, E. Comput. Theoret. Chem. 2011, 978, 16. https://doi.org/10.1016/j.comptc.2011.09.014
- Najafi, M.; Nazarparvar, E.; Haghighi Mood, K.; Zahedi, M.; Klein, E. Comput. Theoret. Chem. 2011, 965, 114. https://doi.org/10.1016/j.comptc.2011.01.035
- Shanks, D.; Amorati, R.; Fumo, M. G.; Pedulli, G. F.; Valgimigli, L.; Engman, L. J. Org. Chem. 2006, 71, 1033. https://doi.org/10.1021/jo052133e
- Al-Maharik, N.; Engman, L.; Malmstrom, J.; Schiesser, C. H. J. Org. Chem. 2001, 66, 6286. https://doi.org/10.1021/jo010274k
- Ceccarelli, S.; Devellis, P.; Scuri, R.; Zanarella, S. J. Heterocycl. Chem. 1990, 30, 679.
- Sun, Y. M.; Zhang, H. Y.; Chen, D. Z.; Liu, C. B. Org. Lett. 2002, 17, 2909.
- Chen, W. J.; Guo, P.; Song, J. R.; Cao, W.; Bian, J. J. Mol. Struct: (THEOCHEM) 2006, 763, 161. https://doi.org/10.1016/j.theochem.2005.12.035
- DiLabio, G. A.; Pratt, D. A.; LoFaro, A. D.; Wright, J. S. J. Phys. Chem. A 1999, 103, 1653. https://doi.org/10.1021/jp984369a
- Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
- Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
- Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowsk, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaroni, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzales, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M. R. E. S.; Pople, J. A. Gaussian 98, Gaussian, Inc, Pittsburgh, PA, 1998.
- Chandra, A. K.; Uchimaru, T. Int. J. Mol. Sci. 2002, 3, 407. https://doi.org/10.3390/i3040407
- Bizarro, M. M.; Costa Cabral, B. J.; Borgesdos Santos, R. M.; Martinho Simões, J. A. Pure. Appl. Chem. 1999, 71, 1249. https://doi.org/10.1046/j.1365-3075.1999.00279.x
- Grisar, J. M.; Petty, M. A.; Bolkenius, F. N.; Dow, J.; Wagner, J.; Wagner, E. R.; Haegele, K. D.; De, J. W. J. Med. Chem. 1991, 34, 257. https://doi.org/10.1021/jm00105a040
- Bolkenius, F. N.; Grisar, J. M.; De, J. W. Free Radic. Res. Commun. 1991, 14, 363. https://doi.org/10.3109/10715769109093425
- DiLabio, G. A.; Pratt, D. A.; Wright, J. S. Chem. Phys. Lett. 1999, 311, 215. https://doi.org/10.1016/S0009-2614(99)00786-1
- DiLabio, G. A.; Pratt, D. A.; Wright, J. S. J. Org. Chem. 2000, 65, 2195. https://doi.org/10.1021/jo991833e
- Koopmans, T. Physica 1933, 1, 104.
- Migliavacca, E.; Carrupt, P. A.; Testa, B. Helv. Chim. Acta 1997, 80, 1613. https://doi.org/10.1002/hlca.19970800519
- Zhang, H. Y. J. Am. Oil. Chem. Soc. 1998, 75, 1705. https://doi.org/10.1007/s11746-998-0320-4
- Zhang, H. Y. J. Am. Oil. Chem. Soc. 1999, 76, 1109.
- Kanchev, V. D.; Saso, L.; Boranova, P, V.; Khan, A.; Saroj, M. K.; Pandey, M. K.; Malhotra, S.; Nechev, J. Z.; Sharma, S. K.; Prasad, A. K.; Georgieva, M. B.; Joseph, C.; DePass, A. L.; Rastogi, R. C.; Parmar, V. S. Biochimie. 2010, 92, 1089. https://doi.org/10.1016/j.biochi.2010.06.012
- Lavarda, F. C. Int. J. Quant. Chem. 2003, 95, 219. https://doi.org/10.1002/qua.10692
- Bi, W.; Bi, Y.; Xue, P.; Zhang, Y.; Gao, X.; Wang, Z.; Li, M.; Baudy-Floch, M.; Ngerebara, N.; Gibson, K. M.; Bi, L. J. Med. Chem. 2010, 53, 6763. https://doi.org/10.1021/jm100529e
- Zahalka, H. A.; Robillard, B.; Hughes, L.; Lusztyk, J.; Burton, G. W.; Janzen, E. G.; Kotake, Y.; Ingold, K. U. J. Org. Chem. 1988, 53, 3739. https://doi.org/10.1021/jo00251a014
Cited by
- Antioxidant activity of omega-3 derivatives and their delivery via nanocages and nanocones: DFT and experimental in vivo investigation vol.23, pp.11, 2017, https://doi.org/10.1007/s00894-017-3504-8
- Theoretical and Experimental in vivo Study of Antioxidant Activity of Crocin in Order to Propose Novel Derivatives with Higher Antioxidant Activity and Their Delivery via Nanotubes and Nanocones vol.40, pp.5, 2017, https://doi.org/10.1007/s10753-017-0623-4
- Calculated antioxidant activity of selected phenolic compounds vol.96, pp.3, 2018, https://doi.org/10.1139/cjc-2017-0496