References
- Holloway, S.; Pearce, J. M.; Hards, V. L.; Ohsumi, T.; Gale, J. Energy 2007, 32, 1194. https://doi.org/10.1016/j.energy.2006.09.001
- Valenzano, L.; Civalleri, B.; Chavan, S.; Palomino, G. T.; Areán, C. O.; Bordiga, S. J. Phys. Chem. C 2010, 114, 11185. https://doi.org/10.1021/jp102574f
- Bang, J. K.; Jung, S.; Kim, Y.; Kim, M. Bull. Korean Chem. Soc. 2011, 32, 2871. https://doi.org/10.5012/bkcs.2011.32.8.2871
- Seong, S. et al. Bull. Korean Chem. Soc. 2003, 24, 494. https://doi.org/10.5012/bkcs.2003.24.4.494
- 5. Saha, L. C.; Mian, S. A.; Jang, J. Bull. Korean Chem. Soc. 2012, 33, 893. https://doi.org/10.5012/bkcs.2012.33.3.893
- Beheshtian, J.; Baei, M. T.; Peyghan, A. A. Surf. Sci. 2012, 606, 981. https://doi.org/10.1016/j.susc.2012.02.019
- Wu, X.; An, W.; Zeng, X. Z. J. Am. Chem. Soc. 2006, 128, 12001. https://doi.org/10.1021/ja063653+
- Hwang, S. J.; Kim, J. W.; Yoo, S. J.; Jang, J. H.; Cho, E. A.; Lim, T. H.; Pyo, S. G.; Kim, S. K. Bull. Korean Chem. Soc. 2012, 33, 699. https://doi.org/10.5012/bkcs.2012.33.2.699
- Mohammad-khah, A.; Ansari, R.; Delavar, A. F.; Mosayebzadeh, Z. Bull. Korean Chem. Soc. 2012, 33, 1247. https://doi.org/10.5012/bkcs.2012.33.4.1247
- Ahmadi, A.; Hadipour, N. L.; Kamfiroozi, M.; Bagheri, Z. Sens. Actuators B-Chem. 2012, 161, 1025. https://doi.org/10.1016/j.snb.2011.12.001
- Beheshtian, J.; Kamfiroozi, M.; Bagheri, Z.; Ahmadi, A. Physica E 2011, 44, 546. https://doi.org/10.1016/j.physe.2011.09.016
- Beheshtian, J.; Kamfiroozi, M.; Bagheri, Z.; Ahmadi, A. Comp. Mater. Sci. 2012, 54, 115. https://doi.org/10.1016/j.commatsci.2011.09.039
- Chen, P.; Wu, X.; Lin, J.; Tan, K. L. Science 1999, 285, 91. https://doi.org/10.1126/science.285.5424.91
- Oku, T.; Hirano, T.; Kuno, M.; Kusunose, T.; Niihare, K.; Suganuma, K. Mater. Sci. Eng. B 2000, 74, 206. https://doi.org/10.1016/S0921-5107(99)00563-2
- Oku, T.; Kuno, M.; Kitahara, H.; Nartia, I. Int. J. Inorg. Mater. 2001, 3, 597. https://doi.org/10.1016/S1466-6049(01)00169-6
- Oku, T.; Kuno, M.; Narita, I. J. Phys. Chem. Solids 2012, 65, 549.
- Cao, F.; Ren, W.; Ji, Y.; Zhao, C. Nanotechnology 2009, 20, 145703(1). https://doi.org/10.1088/0957-4484/20/14/145703
- Ciofani, G.; Genchi, G. G.; Liakos, I.; Athanassiou, A.; Dinucci, D.; Chiellini, F.; Mattoli, V. J. Colloid and Interface Sci. 2012, 347, 308.
- Seifert, G.; Fowler, R. W.; Mitchell, D.; Porezag, D.; Frauenheim, T. Chem. Phys. Lett. 1997, 268, 352. https://doi.org/10.1016/S0009-2614(97)00214-5
- Oku, T.; Nishiwaki, A.; Narita, I. Sci. Tech. Adv. Mater. 2004, 5, 635. https://doi.org/10.1016/j.stam.2004.03.017
- Strout, D. L. J. Phys. Chem. A 2000, 104, 3364. https://doi.org/10.1021/jp994129a
- Strout, D. L. J. Phys. Chem. A 2001, 105, 261. https://doi.org/10.1021/jp003187p
- Beheshtian, J.; Bagheri, Z.; Kamfiroozi, M.; Ahmadi, A. Microelectron. J. 2011, 42, 1400. https://doi.org/10.1016/j.mejo.2011.10.010
- Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347. https://doi.org/10.1002/jcc.540141112
- Lee, W. R.; Lee, C., Kang, J.; Park, S. S.; Hwang, Y. G.; Lee, K. H. Bull. Korean Chem. Soc. 2009, 30, 445. https://doi.org/10.5012/bkcs.2009.30.2.445
- Chen, L.; Xu, C.; Zhang, X.-F.; Zhou T. Physica E 2009, 41, 852. https://doi.org/10.1016/j.physe.2009.01.006
- Ahmadi, A.; Beheshtian, J.; Hadipour, N. Struct. Chem. 2011, 22, 183. https://doi.org/10.1007/s11224-010-9697-4
- Jia, J. F.; Wang, H.; Pei, X. Q.; Wu, H. S. Appl. Surf. Sci. 2007, 253, 4485. https://doi.org/10.1016/j.apsusc.2006.09.066
- Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. https://doi.org/10.1103/PhysRev.46.618
- Choi, H.; Park, Y.; Kim, Y.; Lee, Y. J. Am. Chem. Soc. 2011, 133, 2084. https://doi.org/10.1021/ja1101807
- Mousavi, H.; Kurdestany, J.; Bagheri M. Appl. Phys. A doi:10.1007/s00339-012-6933-3.
Cited by
- A theoretical study on monoatomic BN nanochains and nanorings vol.22, pp.9, 2016, https://doi.org/10.1007/s00894-016-3069-y
- A study of B12N12 nanocage as potential sensor for detection and reduction of 2,3,7,8-tetrachlorodibenzodioxin vol.89, pp.9, 2016, https://doi.org/10.1134/S1070427216090226
- Evaluating Minnesota 2006 density functionals against some challenging problems in DFT vol.23, pp.2, 2017, https://doi.org/10.1007/s00894-017-3213-3
- nanocluster surface in gas and aqueous mediums through DFT calculations pp.02682605, 2018, https://doi.org/10.1002/aoc.4543
- nano-cage encapsulated with alkali metals: A density functional study pp.1793-7094, 2019, https://doi.org/10.1142/S1793292019500346
- DFT studies for the evaluation of amine functionalized polystyrene adsorbents for selective adsorption of carbon dioxide vol.4, pp.39, 2012, https://doi.org/10.1039/c4ra00444b
- Electronic properties of B12N12 fullerene-like nanoclusters functionalized with Schiff bases: a DFT study vol.30, pp.3, 2019, https://doi.org/10.1007/s11224-018-1246-6
- Adsorption of Phosgene Gas on Pristine and Copper-Decorated B12N12 Nanocages: A Comparative DFT Study vol.5, pp.13, 2012, https://doi.org/10.1021/acsomega.0c00507
- Graphitic carbon nitride functionalized with four boron atoms for adsorption and separation of CO2/CH4: DFT calculations vol.26, pp.4, 2012, https://doi.org/10.1007/s10450-020-00233-4
- Designing Novel Zn-Decorated Inorganic B12P12 Nanoclusters with Promising Electronic Properties: A Step Forward toward Efficient CO2 Sensing Materials vol.5, pp.25, 2012, https://doi.org/10.1021/acsomega.0c01686
- Influence of the adsorption of toxic agents on the optical and electronic properties of B12N12 fullerene in the presence and absence of an external electric field vol.44, pp.34, 2012, https://doi.org/10.1039/d0nj01868f