DOI QR코드

DOI QR Code

A DFT Study on CO2 Interaction with a BN Nano-Cage

  • Baei, Mohammad T. (Department of Chemistry, Azadshahr Branch, Islamic Azad University) ;
  • Peyghan, Ali Ahmadi (Young Researchers Club, Islamic Azad University) ;
  • Bagheri, Zargham (Physics Group, Science department, Islamic Azad University)
  • Received : 2012.05.03
  • Accepted : 2012.07.16
  • Published : 2012.10.20

Abstract

Covalent functionalization of a $B_{12}N_{12}$ nano-cage with $CO_2$ molecule has been investigated using density functional theory in terms of energetic, geometric, and electronic property analyses. Results show that besides two physisorption configurations, $CO_2$ preferably tends to perform [2+2] addition on B-N bonds of the cluster which are shared between six-membered and four-membered rings, releasing energy of 14.99 kcal/mol for adsorption of the first $CO_2$ and of 15.45 kcal/mol for the second one (per each molecule). On the basis of calculated density of states, we have found that the electronic properties of the physisorbed $B_{12}N_{12}$ by $CO_2$ have not changed, while slight changes have been predicted in the functionalized cases. Present results might be helpful to provide an effective way to modify the $B_{12}N_{12}$ properties for further purifications and applications.

Keywords

References

  1. Holloway, S.; Pearce, J. M.; Hards, V. L.; Ohsumi, T.; Gale, J. Energy 2007, 32, 1194. https://doi.org/10.1016/j.energy.2006.09.001
  2. Valenzano, L.; Civalleri, B.; Chavan, S.; Palomino, G. T.; Areán, C. O.; Bordiga, S. J. Phys. Chem. C 2010, 114, 11185. https://doi.org/10.1021/jp102574f
  3. Bang, J. K.; Jung, S.; Kim, Y.; Kim, M. Bull. Korean Chem. Soc. 2011, 32, 2871. https://doi.org/10.5012/bkcs.2011.32.8.2871
  4. Seong, S. et al. Bull. Korean Chem. Soc. 2003, 24, 494. https://doi.org/10.5012/bkcs.2003.24.4.494
  5. 5. Saha, L. C.; Mian, S. A.; Jang, J. Bull. Korean Chem. Soc. 2012, 33, 893. https://doi.org/10.5012/bkcs.2012.33.3.893
  6. Beheshtian, J.; Baei, M. T.; Peyghan, A. A. Surf. Sci. 2012, 606, 981. https://doi.org/10.1016/j.susc.2012.02.019
  7. Wu, X.; An, W.; Zeng, X. Z. J. Am. Chem. Soc. 2006, 128, 12001. https://doi.org/10.1021/ja063653+
  8. Hwang, S. J.; Kim, J. W.; Yoo, S. J.; Jang, J. H.; Cho, E. A.; Lim, T. H.; Pyo, S. G.; Kim, S. K. Bull. Korean Chem. Soc. 2012, 33, 699. https://doi.org/10.5012/bkcs.2012.33.2.699
  9. Mohammad-khah, A.; Ansari, R.; Delavar, A. F.; Mosayebzadeh, Z. Bull. Korean Chem. Soc. 2012, 33, 1247. https://doi.org/10.5012/bkcs.2012.33.4.1247
  10. Ahmadi, A.; Hadipour, N. L.; Kamfiroozi, M.; Bagheri, Z. Sens. Actuators B-Chem. 2012, 161, 1025. https://doi.org/10.1016/j.snb.2011.12.001
  11. Beheshtian, J.; Kamfiroozi, M.; Bagheri, Z.; Ahmadi, A. Physica E 2011, 44, 546. https://doi.org/10.1016/j.physe.2011.09.016
  12. Beheshtian, J.; Kamfiroozi, M.; Bagheri, Z.; Ahmadi, A. Comp. Mater. Sci. 2012, 54, 115. https://doi.org/10.1016/j.commatsci.2011.09.039
  13. Chen, P.; Wu, X.; Lin, J.; Tan, K. L. Science 1999, 285, 91. https://doi.org/10.1126/science.285.5424.91
  14. Oku, T.; Hirano, T.; Kuno, M.; Kusunose, T.; Niihare, K.; Suganuma, K. Mater. Sci. Eng. B 2000, 74, 206. https://doi.org/10.1016/S0921-5107(99)00563-2
  15. Oku, T.; Kuno, M.; Kitahara, H.; Nartia, I. Int. J. Inorg. Mater. 2001, 3, 597. https://doi.org/10.1016/S1466-6049(01)00169-6
  16. Oku, T.; Kuno, M.; Narita, I. J. Phys. Chem. Solids 2012, 65, 549.
  17. Cao, F.; Ren, W.; Ji, Y.; Zhao, C. Nanotechnology 2009, 20, 145703(1). https://doi.org/10.1088/0957-4484/20/14/145703
  18. Ciofani, G.; Genchi, G. G.; Liakos, I.; Athanassiou, A.; Dinucci, D.; Chiellini, F.; Mattoli, V. J. Colloid and Interface Sci. 2012, 347, 308.
  19. Seifert, G.; Fowler, R. W.; Mitchell, D.; Porezag, D.; Frauenheim, T. Chem. Phys. Lett. 1997, 268, 352. https://doi.org/10.1016/S0009-2614(97)00214-5
  20. Oku, T.; Nishiwaki, A.; Narita, I. Sci. Tech. Adv. Mater. 2004, 5, 635. https://doi.org/10.1016/j.stam.2004.03.017
  21. Strout, D. L. J. Phys. Chem. A 2000, 104, 3364. https://doi.org/10.1021/jp994129a
  22. Strout, D. L. J. Phys. Chem. A 2001, 105, 261. https://doi.org/10.1021/jp003187p
  23. Beheshtian, J.; Bagheri, Z.; Kamfiroozi, M.; Ahmadi, A. Microelectron. J. 2011, 42, 1400. https://doi.org/10.1016/j.mejo.2011.10.010
  24. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347. https://doi.org/10.1002/jcc.540141112
  25. Lee, W. R.; Lee, C., Kang, J.; Park, S. S.; Hwang, Y. G.; Lee, K. H. Bull. Korean Chem. Soc. 2009, 30, 445. https://doi.org/10.5012/bkcs.2009.30.2.445
  26. Chen, L.; Xu, C.; Zhang, X.-F.; Zhou T. Physica E 2009, 41, 852. https://doi.org/10.1016/j.physe.2009.01.006
  27. Ahmadi, A.; Beheshtian, J.; Hadipour, N. Struct. Chem. 2011, 22, 183. https://doi.org/10.1007/s11224-010-9697-4
  28. Jia, J. F.; Wang, H.; Pei, X. Q.; Wu, H. S. Appl. Surf. Sci. 2007, 253, 4485. https://doi.org/10.1016/j.apsusc.2006.09.066
  29. Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. https://doi.org/10.1103/PhysRev.46.618
  30. Choi, H.; Park, Y.; Kim, Y.; Lee, Y. J. Am. Chem. Soc. 2011, 133, 2084. https://doi.org/10.1021/ja1101807
  31. Mousavi, H.; Kurdestany, J.; Bagheri M. Appl. Phys. A doi:10.1007/s00339-012-6933-3.

Cited by

  1. A theoretical study on monoatomic BN nanochains and nanorings vol.22, pp.9, 2016, https://doi.org/10.1007/s00894-016-3069-y
  2. A study of B12N12 nanocage as potential sensor for detection and reduction of 2,3,7,8-tetrachlorodibenzodioxin vol.89, pp.9, 2016, https://doi.org/10.1134/S1070427216090226
  3. Evaluating Minnesota 2006 density functionals against some challenging problems in DFT vol.23, pp.2, 2017, https://doi.org/10.1007/s00894-017-3213-3
  4. nanocluster surface in gas and aqueous mediums through DFT calculations pp.02682605, 2018, https://doi.org/10.1002/aoc.4543
  5. nano-cage encapsulated with alkali metals: A density functional study pp.1793-7094, 2019, https://doi.org/10.1142/S1793292019500346
  6. DFT studies for the evaluation of amine functionalized polystyrene adsorbents for selective adsorption of carbon dioxide vol.4, pp.39, 2012, https://doi.org/10.1039/c4ra00444b
  7. Electronic properties of B12N12 fullerene-like nanoclusters functionalized with Schiff bases: a DFT study vol.30, pp.3, 2019, https://doi.org/10.1007/s11224-018-1246-6
  8. Adsorption of Phosgene Gas on Pristine and Copper-Decorated B12N12 Nanocages: A Comparative DFT Study vol.5, pp.13, 2012, https://doi.org/10.1021/acsomega.0c00507
  9. Graphitic carbon nitride functionalized with four boron atoms for adsorption and separation of CO2/CH4: DFT calculations vol.26, pp.4, 2012, https://doi.org/10.1007/s10450-020-00233-4
  10. Designing Novel Zn-Decorated Inorganic B12P12 Nanoclusters with Promising Electronic Properties: A Step Forward toward Efficient CO2 Sensing Materials vol.5, pp.25, 2012, https://doi.org/10.1021/acsomega.0c01686
  11. Influence of the adsorption of toxic agents on the optical and electronic properties of B12N12 fullerene in the presence and absence of an external electric field vol.44, pp.34, 2012, https://doi.org/10.1039/d0nj01868f