DOI QR코드

DOI QR Code

Extraction of Phthalate Esters in Environmental Water Samples Using Layered-Carbon Magnetic Hybrid Material as Adsorbent Followed by Their Determination with HPLC

  • Wang, Weina (Key Laboratory of Bioinorganic Chemistry, College of Science, Agricultural University of Hebei) ;
  • Wu, Qiuhua (Key Laboratory of Bioinorganic Chemistry, College of Science, Agricultural University of Hebei) ;
  • Zang, Xiaohuan (Key Laboratory of Bioinorganic Chemistry, College of Science, Agricultural University of Hebei) ;
  • Wang, Chun (Key Laboratory of Bioinorganic Chemistry, College of Science, Agricultural University of Hebei) ;
  • Wang, Zhi (Key Laboratory of Bioinorganic Chemistry, College of Science, Agricultural University of Hebei)
  • Received : 2012.06.13
  • Accepted : 2012.07.13
  • Published : 2012.10.20

Abstract

In this paper, a layered-carbon-$Fe_3O_4$ (LC-$Fe_3O_4$) hybrid material was synthesized through a facile one-pot solvothermal method and used as the adsorbent for the preconcentration of some phthalate esters (dimethyl phthalate, diethyl phthalate, diallyl phthalate, diisobutyl phthalate and benzyl butyl phthalate) in water samples. The effects of the adsorbent dosage, extraction time, the solution pH and salinity on the adsorption of the phthalate esters (PAEs) were investigated. The magnetic nanocomposite adsorbent could remove and enrich the PAEs from water samples efficiently. After the adsorption, the analytes were desorbed and then determined by high performance liquid chromatography-ultraviolet detection. Under the optimum conditions, the enrichment factors of the method for the analytes were in the range from 161 to 180. A linear response with peak area as the quantification signal was observed in the concentration range from 0.5 to $100ng\;mL^{-1}$. The limits of detection (S/N = 3) of the method were between 0.08 and $0.1ng\;mL^{-1}$. The method was suitable for the determination of trace phthalate esters in environmental water samples.

Keywords

References

  1. Perez Feas, C.; Barciela Alonso, M. C.; Pena-Vazquez, E.; Hermelo, P. H.; Bermejo-Barrera, P. Talanta 2008, 75, 1184. https://doi.org/10.1016/j.talanta.2008.01.019
  2. Holadová, K.; Prokùpková, G.; Hajšlová, J.; Poustka, J. Anal. Chim. Acta 2007, 582, 24. https://doi.org/10.1016/j.aca.2006.09.005
  3. Gomez-Hens, A.; Aguilar-Caballos, M. P. Trends Anal. Chem. 2003, 22, 847. https://doi.org/10.1016/S0165-9936(03)01201-9
  4. Amiridou, D.; Voutsa, D. J. Hazard. Mater. 2011, 185, 281. https://doi.org/10.1016/j.jhazmat.2010.09.031
  5. Vitali, M.; Guidotti, M.; Macilenti, G.; Cremisini, C. Environ. Int. 1997, 23, 337. https://doi.org/10.1016/S0160-4120(97)00035-4
  6. Cai, Y. Q.; Jiang, G. B.; Liu, J. F.; Zhou, Q. X. Anal. Chim. Acta 2003, 494, 149. https://doi.org/10.1016/j.aca.2003.08.006
  7. He, J.; Lv, R.; Zhu, J.; Lu, K. Anal. Chim. Acta 2010, 661, 215. https://doi.org/10.1016/j.aca.2009.12.029
  8. Sablayrolles, C.; Montréjaud-Vignoles, M.; Benanou, D.; Patria, L.; Treilhou, M. J. Chromatogr. A 2005, 1072, 233. https://doi.org/10.1016/j.chroma.2005.02.074
  9. Li, J.; Cai, Y.; Shi, Y.; Mou, S.; Jiang, G. Talanta 2008, 74, 498. https://doi.org/10.1016/j.talanta.2007.06.008
  10. Yao, J.; Xu, H.; Lv, L.; Song, D.; Cui, Y.; Zhang, T.; Feng, Y. Q. Anal. Chim. Acta 2008, 616, 42. https://doi.org/10.1016/j.aca.2008.04.007
  11. Polo, M.; Llompart, M.; Garcia-Jares, C.; Cela, R. J. Chromatogr. A 2005, 1072, 63. https://doi.org/10.1016/j.chroma.2004.12.040
  12. Xu, C. L. J. Chromatogr. A 2008, 1178, 231 https://doi.org/10.1016/j.chroma.2007.11.095
  13. Ye, C. W.; Gao, J.; Yang, C.; Liu, X. J.; Li, X. J.; Pan, S. Y. Anal. Chim. Acta 2009, 641, 64. https://doi.org/10.1016/j.aca.2009.02.052
  14. Zhou, X.; Xie, P. F.; Wang, J.; Zhang, B. B.; Liu, M. M.; Liu, H. L.; Feng, X. H. J. Chromatogr. A 2011, 1218, 3571. https://doi.org/10.1016/j.chroma.2011.03.048
  15. Psillakis, E.; Mantzavinos, D.; Kalogerakis, N. Chemosphere 2004, 54, 849. https://doi.org/10.1016/j.chemosphere.2003.09.039
  16. Batlle, R.; Nerín, C. J. Chromatogr. A 2004, 1045, 29. https://doi.org/10.1016/j.chroma.2004.06.001
  17. Chen, S.; Zhong, Y. S.; Cheng, S. Y.; Qian, T.; Su, H. J. Sep. Sci. 2011, 34, 1503. https://doi.org/10.1002/jssc.201000855
  18. Liang, P.; Xu, J.; Li, Q. Anal. Chim. Acta 2008, 609, 53. https://doi.org/10.1016/j.aca.2007.12.025
  19. Zhou, Q.; Zhang, X.; Xie, G. Anal. Methods 2011, 3, 1815. https://doi.org/10.1039/c1ay05137g
  20. Zhang, H.; Chen, X.; Jiang, X. Anal. Chim. Acta 2011, 689, 137. https://doi.org/10.1016/j.aca.2011.01.024
  21. Psillakis, E.; Kalogerakis, N. J. Chromatogr. A 2003, 999, 145. https://doi.org/10.1016/S0021-9673(03)00390-X
  22. Chang, M. S.; Shen, J. Y.; Yang, S. H.; Wu, G. J. J. Hazard. Mater. 2011, 192, 1203. https://doi.org/10.1016/j.jhazmat.2011.06.031
  23. Farahani, H.; Ganjali, M. R.; Dinarvand, R.; Norouzi, P. Talanta 2008, 76, 718. https://doi.org/10.1016/j.talanta.2008.03.002
  24. Safarikova, M.; Safarik, I. J. Magn. Magn. Mater. 1999, 194, 108. https://doi.org/10.1016/S0304-8853(98)00566-6
  25. Afkhami, A.; Moosavi, R.; Madrakian, T. Talanta 2010, 82, 785. https://doi.org/10.1016/j.talanta.2010.05.054
  26. Hsu, C. C.; Whang, C. W. J. Chromatogr. A 2009, 1216, 8575. https://doi.org/10.1016/j.chroma.2009.10.023
  27. Li, J.; Zhao, X.; Shi, Y.; Cai, Y.; Mou, S.; Jiang, G. J. Chromatogr. A 2008, 1180, 24. https://doi.org/10.1016/j.chroma.2007.12.028
  28. Pyrzynska, K. Trends Anal. Chem. 2010, 29, 718. https://doi.org/10.1016/j.trac.2010.03.013
  29. Sun, L.; Sun, X.; Du, X.; Yue, Y.; Chen, L.; Xu, H.; Zeng, Q.; Wang, H.; Ding, L. Anal. Chim. Acta 2010, 665, 185. https://doi.org/10.1016/j.aca.2010.03.044
  30. Zhang, S.; Niu, H.; Hu, Z.; Cai, Y.; Shi, Y. J. Chromatogr. A 2010, 1217, 4757. https://doi.org/10.1016/j.chroma.2010.05.035
  31. Zhu, L.; Pan, D.; Ding, L.; Tang, F.; Zhang, Q.; Liu, Q.; Yao, S. Talanta 2010, 80, 1873. https://doi.org/10.1016/j.talanta.2009.10.037
  32. Niu, H.; Zhang, S.; Zhang, X.; Cai, Y. ACS Appl. Mater. Interfaces 2010, 2, 1157. https://doi.org/10.1021/am100010x
  33. Zhang, S.; Niu, H.; Cai, Y.; Shi, Y. Anal. Chim. Acta 2010, 665, 167.
  34. Meng, J.; Bu, J.; Deng, C.; Zhang, X. J. Chromatogr. A 2011, 1218, 1585. https://doi.org/10.1016/j.chroma.2011.01.057
  35. Ravelo-Perez, L. M.; Herrera-Herrera, A. V.; Hernandez-Borges, J.; Rodríguez-Delgado, M. A. J. Chromatogr. A 2010, 1217, 2618. https://doi.org/10.1016/j.chroma.2009.10.083
  36. Gao, Y. J.; Ma, D.; Hu, G.; Zhai, P.; Bao, X. H.; Zhu, B.; Zhang, B. S.; Su, D. S. Angew. Chem. Int. Ed. 2011, 50, 10236. https://doi.org/10.1002/anie.201101737
  37. Zhang, K.; Dwivedi, V.; Chi, C.; Wu, J. J. Hazard. Mater. 2010, 182, 162. https://doi.org/10.1016/j.jhazmat.2010.06.010
  38. Luo, Y. B.; Shi, Z. G.; Gao, Q.; Feng, Y. Q. J. Chromatogr. A 2011, 1218, 1353. https://doi.org/10.1016/j.chroma.2011.01.022
  39. Luo, Y. B.; Yu, Q. W.; Yuan, B. F.; Feng, Y. Q. Talanta 2012, 90, 123. https://doi.org/10.1016/j.talanta.2012.01.015
  40. Zhang, X. L.; Niu, H. Y.; Zhang, S. X.; Cai, Y. Q. Anal. Bioanal. Chem. 2010, 397, 791. https://doi.org/10.1007/s00216-010-3592-0

Cited by

  1. Dispersive liquid-phase microextraction in combination with HPLC for the enrichment and rapid determination of benzoylurea pesticides in environmental water samples vol.36, pp.14, 2013, https://doi.org/10.1002/jssc.201300138
  2. Ionic liquid supported on an electrodeposited polycarbazole film for the headspace solid-phase microextraction and gas chromatography determination of aromatic esters vol.38, pp.9, 2015, https://doi.org/10.1002/jssc.201401385
  3. An elevated temperature-dispersive liquid–liquid microextraction method combined with GC-flame ionization detection as a sensitive method for determining phthalate esters vol.7, pp.10, 2015, https://doi.org/10.1039/C4AY02998D
  4. Ionic Liquid-Based Surfactant Extraction Coupled with Magnetic Dispersive μ-Solid Phase Extraction for the Determination of Phthalate Esters in Packaging Milk Samples by HPLC vol.10, pp.6, 2017, https://doi.org/10.1007/s12161-016-0729-6
  5. SOLID-PHASE EXTRACTION OF PHTHALATE ESTERS FROM AQUEOUS SAMPLES USING MESOPOROUS SILICA-COATED MULTIWALLED CARBON NANOTUBES AND THEIR DETERMINATION BY HPLC vol.9, pp.4, 2012, https://doi.org/10.1142/s1793292014500544
  6. Endocrine-disrupting compounds surveying in polyethylene packed injection solutions using microwave-accelerated air-assisted liquid-liquid microextraction based on solidification of deep eutectic solv vol.56, pp.9, 2012, https://doi.org/10.1080/01496395.2020.1788594