DOI QR코드

DOI QR Code

A Multidimensional System for Phosphopeptide Analysis Using TiO2 Enrichment and Ion-exchange Chromatography with Mass Spectrometry

  • Cho, Kun (Division of Mass Spectrometry Research, Korea Basic Science Institute) ;
  • Yoo, Ji-Sun (Division of Mass Spectrometry Research, Korea Basic Science Institute) ;
  • Kim, Eun-Min (Division of Mass Spectrometry Research, Korea Basic Science Institute) ;
  • Kim, Jin-Young (Division of Mass Spectrometry Research, Korea Basic Science Institute) ;
  • Kim, Young-Hwan (Division of Mass Spectrometry Research, Korea Basic Science Institute) ;
  • Oh, Han-Bin (Department of Chemistry, Sogang University) ;
  • Yoo, Jong-Shin (Division of Mass Spectrometry Research, Korea Basic Science Institute)
  • Received : 2012.05.15
  • Accepted : 2012.07.13
  • Published : 2012.10.20

Abstract

Although offline enrichment of phosphorylated peptides is widely used, enrichment for phosphopeptides using $TiO_2$ is often performed manually, which is labor-intensive and can lead to irreproducible results. To address the problems associated with offline enrichment and to improve the effectiveness of phosphopeptide detection, we developed an automated online enrichment system for phosphopeptide analysis. A standard protein mixture comprising BSA, fetuin, crystalline, ${\alpha}$-casein and ${\beta}$-casein, and ovalbumin was assessed using our new system. Our multidimensional system has four main parts: a sample pump, a 20-mm $TiO_2$-based column, a weak anion-exchange, and a strong cation-exchange (2:1 WAX:SCX) separation column with LC/MS. Phosphorylated peptides were successfully detected using the $TiO_2$-based online system with little interference from nonphosphorylated peptides. Our results confirmed that our online enrichment system is a simple and efficient method for detecting phosphorylated peptides.

Keywords

References

  1. Mann, M.; Jensen, N. Nat. Biotech. 2003, 21, 255. https://doi.org/10.1038/nbt0303-255
  2. Johnson, S. A.; Hunter, T. Nat. Methods 2005, 2, 17. https://doi.org/10.1038/nmeth731
  3. Hunter, T. Cell 1995, 80, 225. https://doi.org/10.1016/0092-8674(95)90405-0
  4. Conrads, T. P.; Issaq, H. J.; Veenstra, T. D. Biochem. Biophys. Res. Commun. 2002, 290, 885. https://doi.org/10.1006/bbrc.2001.6275
  5. Parekh, R. B.; Rohlff, C. Curr. Opin. Biotechnol. 1997, 8, 718. https://doi.org/10.1016/S0958-1669(97)80126-7
  6. Walsh, C. T.; Garneau-Ysodikova, C.; Gatto, G. J. Angew. Chem. Int. Ed. Engl. 2005, 44, 7342. https://doi.org/10.1002/anie.200501023
  7. Seet, B. T.; Dikic, I.; Zhou, M. M.; Pawson, T. Nature Reviews 2006, 7, 473.
  8. McCarthy, J. E. Microbiol. Mol. Biol. Rev. 1998, 62, 1492.
  9. Delom, F.; Chevet, E. Proteome Sci. 2006, 4, 15. https://doi.org/10.1186/1477-5956-4-15
  10. Venter, J. C.; Adams, M. D.; Myers, E. W.; Li, P. W.; Mural, R. J.; Sutton, G. G.; Smith, H. O.; Yandell, M.; Evans, C. A.; Holt, R. A. Science 2001, 291, 1304. https://doi.org/10.1126/science.1058040
  11. Peng, J.; Kim, M. J.; Cheng, D.; Duong, D. M.; Gygi, S. P.; Sheng, M. J. Biol. Chem. 2004, 279, 21003. https://doi.org/10.1074/jbc.M400103200
  12. Trinidad, J. C.; Thalhammer, A.; Specht, C. G.; Schoepfer, R.; Burlingame, A. L. J. Neurochem. 2005, 92, 1306. https://doi.org/10.1111/j.1471-4159.2004.02943.x
  13. Jaffe, H.; Vinade, L.; Dosemeci, A. Biochem. Biophys. Res. Commun. 2004, 321, 210. https://doi.org/10.1016/j.bbrc.2004.06.122
  14. Tao, W. A.; Wollscheid, B.; Brien, R. O.; Eng, J. K. Nat. Methods 2005, 2, 591. https://doi.org/10.1038/nmeth776
  15. Mclachlin, D. T.; Chait, B. T. Anal. Chem. 2003, 75, 6826. https://doi.org/10.1021/ac034989u
  16. Thaler, F.; Valsasna, B.; Baldi, R.; Xie, J. Anal. Bioanal. Chem. 2003, 376, 366.
  17. Thompson, A. J.; Hart, S. R.; Franz, C.; Barnouin, K.; Ridley, A.; Cramer, R. Anal. Chem. 2003, 75, 3232. https://doi.org/10.1021/ac034134h
  18. Qian, W. J.; Goshe, M. B.; Camp, D. G.; Yu, L. R.; Tang, K.; Smith, R. D. Anal. Chem. 2003, 75, 5441. https://doi.org/10.1021/ac0342774
  19. Pinkse, M. W.; Uitto, P. M.; Hilhorst, M. J.; Ooms, B.; Heck, A. J. Anal. Chem. 2004, 76, 3935. https://doi.org/10.1021/ac0498617
  20. Larsen, M. R.; Thingholm, T. E.; Jensen, O. N.; Roepstorff, P.; Jorgensen, T. J. Mol. Cell Proteom. 2005, 4, 873. https://doi.org/10.1074/mcp.T500007-MCP200
  21. Kweon, H. K.; Hakansson, K. Anal. Chem. 2006, 78, 1743. https://doi.org/10.1021/ac0522355
  22. Beausoleil, S. A.; Jedrychowski, M.: Schwartz, D.; Elias, J. E.; Villen, J.; Li, J.; Cohn, M. A.; Cantley, L. C.; Gygi, S. P. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 12130. https://doi.org/10.1073/pnas.0404720101
  23. Lim, K. B.; Kassel, D. B. Anal. Biochem. 2006, 354, 213. https://doi.org/10.1016/j.ab.2006.04.027
  24. Chen, C. T.; Chen, Y. C. Anal. Chem. 2005, 77, 5912. https://doi.org/10.1021/ac050831t
  25. Neville, D. C.; Rozanas, C. R.; Price, E. M.; Gruis, D. B.; Verkman, A. S.; Townsend, R. R. Protein Sci. 1997, 6, 2436.
  26. Zhou, W.; Merrick, B. A.; Khaledi, M. G.; Tomer, K. B. J. Am. Soc. Mass Spectrom. 2000, 11, 273. https://doi.org/10.1016/S1044-0305(00)00100-8
  27. Yip, T. T.; Hutchens, T. W. FEBS Lett. 1992, 308, 149. https://doi.org/10.1016/0014-5793(92)81264-M
  28. Liao, P. C.; Huang, Z. H.; Allison, J. Anal. Biochem. 1994, 219, 9. https://doi.org/10.1006/abio.1994.1224
  29. Annan, R. S.; Carr, S. A. Anal. Chem. 1996, 68, 3413. https://doi.org/10.1021/ac960221g
  30. Nuwaysir, L.; Stults, J. T. J. Am. Soc. Mass Spectrom. 1993, 4, 662. https://doi.org/10.1016/1044-0305(93)85031-R
  31. Shi, S. D. H.; Hemling, M. E.; Carr, S. A.; Horn, D. M.; Lindh, I.; McLafferty, F. W. Anal. Chem. 2001, 73, 19. https://doi.org/10.1021/ac000703z
  32. Stensballe, A.; Jensen, O. N.; Olsen, J. V.; Haselmann, K. F.; Zubarev, R. A. Rapid Commun. Mass Spectrom. 2000, 14, 1793. https://doi.org/10.1002/1097-0231(20001015)14:19<1793::AID-RCM95>3.0.CO;2-Q
  33. Pinkse, M. W.; Mohammed, S.; Gouw, J. W.; van Breukelen, B.; Vos, H. R.; Heck, A. J. J. Proteome. Res. 2008, 7, 687. https://doi.org/10.1021/pr700605z
  34. Pinkse, M. W.; Uitto, P. M.; Hilhorst, M. J.; Ooms, B.; Heck, A. J. Anal. Chem. 2004, 76, 3935 https://doi.org/10.1021/ac0498617
  35. Liang, X.; Fonnum, G.; Hajivandi, M.; Stene, T.; Kjus, N. H.; Ragnhildstveit, E.; Amshey, J. W.; Predki, P.; Pope, R. M. J. Am. Soc. Mass Spectrom. 2007, 18, 1932. https://doi.org/10.1016/j.jasms.2007.08.001
  36. Hennrich, M. L.; Groenewold, V.; Kops, G. J. P. L.; Heck, A. J. R.; Mohammed, S. Anal. Chem. 2011, 83, 7137. https://doi.org/10.1021/ac2015068
  37. Gauci, S.; Helbig, A. O.; Slijper, M.; Krijgsveld, J.; Heck, A. J. R.; Mohammed, S. Anal. Chem. 2009, 81, 4493. https://doi.org/10.1021/ac9004309
  38. Motoyama, A.; Xu, T.; Ruse, C. I.; Wohlschlegel, J. A.; Yates, J. R. Anal. Chem. 2007, 79, 3623. https://doi.org/10.1021/ac062292d
  39. Oda, Y.; Nagasu, T.; Chait, B. T. Nat. Biotechnol. 2001, 19, 379. https://doi.org/10.1038/86783

Cited by

  1. Quantitative Phosphoproteomics of the Human Neural Stem Cell Differentiation into Oligodendrocyte by Mass Spectrometry vol.3, pp.4, 2012, https://doi.org/10.5478/MSL.2012.3.4.93