DOI QR코드

DOI QR Code

Comparative Toxicity Studies of Ultra-Pure Ag, Au, Co, and Cu Nanoparticles Generated by Laser Ablation in Biocompatible Aqueous Solution

  • Kim, Yea-Seul (Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University) ;
  • Kim, Kuk-Ki (Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University) ;
  • Shin, Seon-Mi (Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University) ;
  • Park, Seung-Min (Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University) ;
  • Hah, Sang-Soo (Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University)
  • Received : 2012.06.26
  • Accepted : 2012.07.10
  • Published : 2012.10.20

Abstract

Nanoparticles (NPs) are increasingly used in consumer products, which have aroused many concerns and debates regarding their fate in biological systems from a point of their safety/toxicity. Although a number of studies on the biological effects of NPs have been published, these are often complicated by the possible toxicity of conventional NPs, caused by contamination with chemical precursors or additives during their synthesis and/or purification procedures. To explicitly understand the toxicity basis of NPs, it is necessary to directly address a main problem related to their intrinsic/inherent toxicity and/or incompatibility with biological objects. The present study is designed to take advantage of a novel laser-assisted method called laser ablation to generate Ag, Au, Co, and Cu NPs in biocompatible aqueous solution, and to evaluate the toxicity of the resulting ultra-pure NPs. Our results show that the ultra-pure NPs with nascent surfaces possess moderate cytotoxicity to human cells in a cell-dependent manner.

Keywords

References

  1. Prasad, P. N. Introduction to Biophotonics; Wiley-Interscience: Hoboken, 2003.
  2. Albrecht, M. A.; Evans, C. W.; Raston, C. L. Green Chem. 2006, 8, 417. https://doi.org/10.1039/b517131h
  3. Dhawan, A.; Sharma, V. Anal. Bioanal. Chem. 2010, 398, 589. https://doi.org/10.1007/s00216-010-3996-x
  4. Scharand, A. M.; Rahman, M. F.; Hussain, S. M.; Schlager, J. J.; Smith, D. A.; Syed, A. F. Nanomed. Nanobiotechnol. 2010, 2, 544.
  5. Kim, K. K.; Kim, D.; Kim, S. K.; Park, S. M.; Song, J. K. Chem. Phys. Lett. 2011, 511, 116. https://doi.org/10.1016/j.cplett.2011.06.017
  6. Besner, S.; Kabashin, A. V.; Winnik, F. M.; Meunier, M. Appl. Phys. A 2008, 93, 955. https://doi.org/10.1007/s00339-008-4773-y
  7. Liang, C.; Shimizu, Y.; Sasaki, T.; Koshizaki, N. J. Phys. Chem. B 2003, 107, 9220. https://doi.org/10.1021/jp0347466
  8. Sibbald, M. S.; Chummanov, G.; Cotton, T. M. J. Phys. Chem. 1996, 100, 4672. https://doi.org/10.1021/jp953248x
  9. Hahn, A.; Guggenheim, M.; Reimers, K.; Ostendorf, A. J. Nanopart. Res. 2010, 12, 1733. https://doi.org/10.1007/s11051-009-9834-4
  10. Kazakevich, P. V.; Simakin, A. V.; Voronov, V. V.; Shafeev, G. A. Applied Surface Sci. 2006, 252, 4373. https://doi.org/10.1016/j.apsusc.2005.06.059
  11. Kazaevich, P. V.; Voronov, V. V.; Simakin, A. V.; Shafeev, G. A. Quantum Electronics 2004, 34, 951. https://doi.org/10.1070/QE2004v034n10ABEH002756
  12. Cho, J. M.; Song, J. K.; Park, S. M. Bull. Korean Chem. Soc. 2009, 30, 1616. https://doi.org/10.5012/bkcs.2009.30.7.1616
  13. Mosmann, T. J. Immunol. Methods 1983, 65, 55. https://doi.org/10.1016/0022-1759(83)90303-4
  14. Hyatt, M. A. Colloidal Gold: Principles, Methods, and Applications; Academic Press: New York, 1989.
  15. Nel, A. E.; Maedler, L.; Klaessig, F.; Castranova, V.; Thomson, M. Nat. Mater. 2009, 8, 543. https://doi.org/10.1038/nmat2442
  16. Miura, N.; Shinohara, Y. Biochem. Biophys. Res. Comm. 2009, 390, 733. https://doi.org/10.1016/j.bbrc.2009.10.039
  17. Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D. Small 2005, 1, 325. https://doi.org/10.1002/smll.200400093
  18. Alkilany, A. M.; Nagaria, P. K.; Hexel, C. R.; Shaw, T. J.; Murphy, C. J.; Wyatt, M. D. Small 2009, 5, 701. https://doi.org/10.1002/smll.200801546
  19. Yoon, K. Y.; Byeon, J. H.; Park, J. H.; Hwang, J. Sci. Total Environ. 2007, 373, 572. https://doi.org/10.1016/j.scitotenv.2006.11.007
  20. Chen, Z.; Meng, H.; Xing, G.; Chen, C.; Zhao, Y.; Jia, G.; Wang, T.; Yuan, H.; Ye, C.; Zhao, F.; Chai, Z.; Zhu, C.; Fang, X.; Ma, B.; Wan, L. Toxicol. Lett. 2006, 163, 109. https://doi.org/10.1016/j.toxlet.2005.10.003
  21. Suzuki, H.; Toyooka, T.; Ibuki, Y. Environ. Sci. Technol. 2007, 41, 3018. https://doi.org/10.1021/es0625632
  22. Subramanian, I.; Vanek, Z. F.; Bronstein, J. M. Curr. Neurol. Neurosci. Rep. 2002, 2, 317. https://doi.org/10.1007/s11910-002-0007-4
  23. Thompson, K. H.; Orvig, C. Science 2003, 300, 936. https://doi.org/10.1126/science.1083004
  24. Ponti, J.; Sabbioni, E.; Murano, B.; Broggi, F.; Marmorato, P.; Franchini, F.; Colognato, R.; Rossi, F. Mutagen. 2009, 24, 439. https://doi.org/10.1093/mutage/gep027

Cited by

  1. and ZnO Nanoparticles Generated by Laser Ablation vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3301
  2. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review vol.98, pp.3, 2014, https://doi.org/10.1007/s00253-013-5422-8
  3. Cyto- and genotoxicity assessment of Gold nanoparticles obtained by laser ablation in A549 lung adenocarcinoma cells vol.17, pp.5, 2015, https://doi.org/10.1007/s11051-015-3023-4
  4. Laser ablation dynamics in liquid phase: The effects of magnetic field and electrolyte vol.117, pp.7, 2015, https://doi.org/10.1063/1.4913253
  5. Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays vol.5, pp.None, 2012, https://doi.org/10.3762/bjnano.5.165
  6. Air–Liquid Interface In Vitro Models for Respiratory Toxicology Research: Consensus Workshop and Recommendations vol.4, pp.2, 2012, https://doi.org/10.1089/aivt.2017.0034
  7. Antimicrobial and Biocompatible Polycaprolactone and Copper Oxide Nanoparticle Wound Dressings against Methicillin-Resistant Staphylococcus aureus vol.10, pp.9, 2012, https://doi.org/10.3390/nano10091692
  8. COVID-19 and a novel initiative to improve safety by 3D printing personal protective equipment parts from computed tomography vol.6, pp.1, 2020, https://doi.org/10.1186/s41205-020-00073-6
  9. Antimicrobial Properties of the Ag, Cu Nanoparticle System vol.10, pp.2, 2021, https://doi.org/10.3390/biology10020137