DOI QR코드

DOI QR Code

A Kinetic Study on Nucleophilic Substitution Reactions of Phenyl Y-Substituted-Phenyl Carbonates with Z-Substituted-Phenoxides: Effect of Modification of Nonleaving Group from Benzoyl to Phenyloxycarbonyl on Reactivity and Reaction Mechanism

  • Min, Se-Won (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Kim, Min-Young (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2012.06.24
  • Accepted : 2012.07.07
  • Published : 2012.10.20

Abstract

Second-order rate constants for the reactions of phenyl Y-substituted-phenyl carbonates 5a-g with Z-substituted-phenoxides ($k_{Z-PhO^-}$) have been measured spectrophotometrically in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. 4-Nitrophenyl phenyl carbonate (5e) is up to 235 times more reactive than 4-nitrophenyl benzoate (4e). The Br$\o$nsted-type plot for the reactions of 5e with Z-substituted-phenoxides is linear with ${\beta}_{nuc}=0.54$, which is typical for reactions reported previously to proceed through a concerted mechanism. Hammett plots correlated with ${\sigma}^o$ and ${\sigma}^-$ constants for the reactions of 5a-f with 4-chlorophenoxide exhibit highly scattered points. In contrast, the Yukawa-Tsuno plot results in an excellent linear correlation with ${\rho}_Y=1.51$ and r = 0.52, indicating that the leaving-group departure occurs at the rate-determining step (RDS). A stepwise mechanism, in which leaving-group departure occurs at RDS, has been excluded since the incoming 4-$ClPhO^-$ is more basic and a poorer nucleofuge than the leaving Y-substituted-phenoxides. Thus, the reaction has been concluded to proceed through a concerted mechanism. Our study has shown that the modification of the nonleaving group from benzoyl to phenyloxycarbonyl causes a change in the reaction mechanism (i.e., from a stepwise mechanism to a concerted pathway) as well as an increase in the reactivity.

Keywords

References

  1. Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Singapore, 1997; Chapter 7.
  2. Castro, E. A. Chem. Rev. 1999, 99, 3505. https://doi.org/10.1021/cr990001d
  3. Jencks, W. P. Chem. Rev. 1985, 85, 511. https://doi.org/10.1021/cr00070a001
  4. Jencks, W. P. Chem. Soc. Rev. 1981, 10, 345. https://doi.org/10.1039/cs9811000345
  5. Jencks, W. P. Acc. Chem. Res. 1980, 13, 161. https://doi.org/10.1021/ar50150a001
  6. Castro, E. A.; Aliaga, M.; Campodonico, P. R.; Cepeda, M.; Contreras, R.; Santos, J. G. J. Org. Chem. 2009, 74, 9173. https://doi.org/10.1021/jo902005y
  7. Castro, E. A.; Ramos, M.; Santos, J. G. J. Org. Chem. 2009, 74, 6374. https://doi.org/10.1021/jo901137f
  8. Castro, E. A. Pure Appl. Chem. 2009, 81, 685. https://doi.org/10.1351/PAC-CON-08-08-11
  9. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2005, 70, 2679. https://doi.org/10.1021/jo047742l
  10. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088. https://doi.org/10.1021/jo051168b
  11. Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 432, 426. https://doi.org/10.1016/j.cplett.2006.11.002
  12. Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 426, 280. https://doi.org/10.1016/j.cplett.2006.06.015
  13. Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624. https://doi.org/10.1021/jo050606b
  14. Oh, H. K.; Jin, Y. C.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2005, 3, 1240. https://doi.org/10.1039/b500251f
  15. Lee, I.; Sung, D. D. Curr. Org. Chem. 2004, 8, 557. https://doi.org/10.2174/1385272043370753
  16. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824. https://doi.org/10.1021/ja00766a027
  17. Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1997, 179.
  18. Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1995, 691.
  19. Menger, F. M.; Brian, J.; Azov, V. A. Angew. Chem. Int. Ed. 2002, 41, 2581. https://doi.org/10.1002/1521-3773(20020715)41:14<2581::AID-ANIE2581>3.0.CO;2-#
  20. Perreux, L.; Loupy, A.; Delmotte, M. Tetrahedron 2003, 59, 2185. https://doi.org/10.1016/S0040-4020(03)00151-0
  21. Fife, T. H.; Chauffe, L. J. Org. Chem. 2000, 65, 3579. https://doi.org/10.1021/jo9906835
  22. Spillane, W. J.; Brack, C. J. Chem. Soc. Perkin Trans. 2 1998, 2381.
  23. Linas, A.; Page, M. I. Org. Biomol. Chem. 2004, 2, 651. https://doi.org/10.1039/b313900j
  24. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 8995.
  25. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874. https://doi.org/10.1021/jo025637a
  26. Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. New J. Chem. 2001, 25, 313. https://doi.org/10.1039/b006974o
  27. Oh, H. K.; Kim, S. K.; Cho, I. H.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2000, 2306.
  28. Lim, W. M.; Kim, W. K.; Jung, H. J.; Lee, I. Bull. Korean Chem. Soc. 1995, 16, 252.
  29. Um, I. H.; Bae, A. R. J. Org. Chem. 2011, 76, 7510. https://doi.org/10.1021/jo201387h
  30. Um, I. H.; Im, L. R.; Kim, E. H.; Shin, J. H. Org. Biomol. Chem. 2010, 8, 3801. https://doi.org/10.1039/c0ob00031k
  31. Um, I. H.; Hwang, S. J.; Yoon, S. R.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671. https://doi.org/10.1021/jo801539w
  32. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800. https://doi.org/10.1021/jo0606958
  33. Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937. https://doi.org/10.1021/jo049694a
  34. Um, I. H.; Lee, S. E.; Kwon, H. J. J. Org. Chem. 2002, 67, 8999. https://doi.org/10.1021/jo0259360
  35. Um, I. H.; Kim, E. H.; Lee, J. Y. J. Org. Chem. 2009, 74, 1212. https://doi.org/10.1021/jo802446y
  36. Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073. https://doi.org/10.1021/jo900219t
  37. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823. https://doi.org/10.1021/jo070171n
  38. Um, I. H.; Park, J. E.; Shin, Y. H. Org. Biomol. Chem. 2007, 5, 3539. https://doi.org/10.1039/b712427a
  39. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715. https://doi.org/10.1021/jo061308x
  40. Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438. https://doi.org/10.1021/jo048227q
  41. Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166. https://doi.org/10.1021/jo049812u
  42. Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M.; Bae, S. K. J. Org. Chem. 2003, 68, 5180. https://doi.org/10.1021/jo034190i
  43. Buncel, E.; Um, I. H.; Hoz, S. J. Am. Chem. Soc. 1989, 111, 971. https://doi.org/10.1021/ja00185a029
  44. Um, I. H.; Buncel, E. J. Org. Chem. 2000, 65, 577. https://doi.org/10.1021/jo9915776
  45. Williams, A. Acc. Chem. Res. 1989, 22, 387. https://doi.org/10.1021/ar00167a003
  46. Ba-Saif, S.; Luthra, A. K.; Williams, A. J. Am. Chem. Soc. 1987, 109, 6362. https://doi.org/10.1021/ja00255a021
  47. Bourne, N.; Chrystiuk, E.; Davis, A. M.; Williams, A. J. Am. Chem. Soc. 1988, 110, 1890.
  48. Haake, P.; McCoy, D. R.; Okamura, W.; Alpha, S. R.; Wong, S. Y.; Tyssee, D. A.; McNeal, J. P.; Cook, R. D. Tetrahedron 1968, 9, 5243. https://doi.org/10.1016/S0040-4039(00)89832-9
  49. Um, I. H.; Han, J. Y.; Hwang, S. J. Chem. Eur. J. 2008, 14, 7324. https://doi.org/10.1002/chem.200800553
  50. Pregel, M. J.; Dunn, E. J.; Bencel, E. J. Am. Chem. Soc. 1991, 113, 3545. https://doi.org/10.1021/ja00009a049
  51. D'Rozario, P.; Smyth, R. L.; Williams, A. J. Am. Chem. Soc. 1984, 106, 5027. https://doi.org/10.1021/ja00329a078
  52. Deacon, T.; Farrar, C. R.; Sikkel, B. J.; Williams, A. J. Am. Chem. Soc. 1978, 100, 2525. https://doi.org/10.1021/ja00476a042
  53. Um, I. H.; Jeon, J. S.; Kwon, D. S. Bull. Korean Chem. Soc. 1991, 12, 406.
  54. Kim, S. I.; Hwang, S. J.; Jung, E. M.; Um, I. H. Bull. Korean Chem. Soc. 2010, 37, 2015.
  55. Um, I. H.; Son, M. J.; Kim, S. I.; Akhtar, K. Bull. Korean Chem. Soc. 2010, 31, 1915. https://doi.org/10.5012/bkcs.2010.31.7.1915
  56. Isaacs, N. S. Physical Organic Chemistry; Longman: England, 1995; p 153.
  57. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry; Harper Collins: New York, 1987; p 153.
  58. Um, I. H.; Park, H. R.; Kim, E. Y. Bull. Korean Chem. Soc. 2003, 24, 1251. https://doi.org/10.5012/bkcs.2003.24.9.1251
  59. Castro, E. A.; Pavez, P.; Santos, J. G. J. Org. Chem. 2002, 67, 4494. https://doi.org/10.1021/jo0255532
  60. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963. https://doi.org/10.1021/ja00463a032
  61. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970. https://doi.org/10.1021/ja00463a033
  62. Tsuno, Y.; Fujio, M. Adv. Phys. Org. Chem. 1999, 32, 267. https://doi.org/10.1016/S0065-3160(08)60009-X
  63. Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129. https://doi.org/10.1039/cs9962500129
  64. Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965. https://doi.org/10.1246/bcsj.32.965
  65. Than, S.; Badal, M.; Itoh, S.; Mishima, M. J. Phys. Org. Chem. 2010, 23, 411.
  66. Itoh, S.; Badal, M.; Mishima, M. J. Phys. Org. Chem. 2009, 113, 10075. https://doi.org/10.1021/jp904159u
  67. Than, S.; Maeda, H.; Irie, M.; Kikukawa, K.; Mishima, M. Int. J. Mass. Spect. 2007, 263, 205.
  68. Maeda, H.; Irie, M.; Than, S.; Kikukawa, K.; Mishima, M. Bull. Chem. Soc. Jpn. 2007, 80, 195. https://doi.org/10.1246/bcsj.80.195
  69. Fujio, M.; Alam, M. A.; Umezaki, Y.; Kikukawa, K.; Fujiyama, R.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2007, 80, 2378. https://doi.org/10.1246/bcsj.80.2378
  70. Mishima, M.; Maeda, H.; Than, S.; Irie, M.; Kikukawa, K. J. Phys. Org. Chem. 2006, 19, 616. https://doi.org/10.1002/poc.1104

Cited by

  1. OH in 20 mol % DMSO(aq). Effect of Nucleophile on Acyl-Transfer Reaction vol.36, pp.12, 2015, https://doi.org/10.1002/bkcs.10567