DOI QR코드

DOI QR Code

Ionic Liquids as Benign Solvents for the Extraction of Aromatics

  • Hossain, Md. Anwar (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Lee, Jee-Sun (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Kim, Dai-Hyun (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Nguyen, Dinh Quan (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Cheong, Min-Serk (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Kim, Hoon-Sik (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University)
  • Received : 2012.06.27
  • Accepted : 2012.07.06
  • Published : 2012.10.20

Abstract

Ionic liquids (ILs) have been extensively investigated as promising alternatives to conventional organic solvents such as sulfolane and N,N-dimethylformamide for the selective extraction of aromatic hydrocarbons from the $C_6-C_{10}$ hydrocarbon mixtures produced from the cracking processes of naphtha and light oils. The most important advantage of ILs over conventional organic solvents is that they are immiscible with aliphatic hydrocarbons, and thus the back extraction of ILs from the raffinate phases and top hydrocarbon-rich layers is not necessary. In this paper, a brief review on the state of the art in the utilization of ILs for aromatics separation is presented.

Keywords

References

  1. de Klerk, A. Green Chem. 2008, 10, 1249. https://doi.org/10.1039/b813233j
  2. Dry, M. E. ACS Symp. Ser. 1987, 328, 18. https://doi.org/10.1021/bk-1987-0328.ch002
  3. Meindersma, G. W.; de Haan, A. B. Chem. Eng. Res. Des. 2008, 86, 745. https://doi.org/10.1016/j.cherd.2008.02.016
  4. Gmehling, J.; Mollmann, C. Ind. Eng. Chem. Res. 1998, 37, 3112. https://doi.org/10.1021/ie970782d
  5. Weissermel, K.; Arpe, H.-J. Industrial Organic Chemistry, 4th ed.; Wiley-VCH: Weiheim, Germany, 2003; p 313.
  6. Chen, J.; Duan, L.-P.; Mi, J.-G.; Feio, W.-Y.; Li, Z-C. Fluid Phase Equilb. 2000, 173, 109. https://doi.org/10.1016/S0378-3812(00)00398-8
  7. Chen, J.; Li, Z.; Duan, L. J. Chem. Eng. Data 2000, 45, 689. https://doi.org/10.1021/je990331v
  8. Choi, Y. J.; Cho, K. W.; Cho, B. W.; Yeo, Y.-K. Ind. Eng. Chem. Res. 2002, 41, 5504. https://doi.org/10.1021/ie010435a
  9. Krishna, R.; Goswami, A. N.; Nanoti, S. M.; Rawat, B. S.; Khana, M. K.; Dobhal, J. Ind. J. Techn. 1987, 25, 602.
  10. Yorulmaz, Y.; Karpuzcu, F. Chem. Eng. Res. Des. 1985, 63, 184.
  11. Wang, W.; Gou, Z. M.; Zhu, S. L. J. Chem. Eng. Data 1998, 43, 81. https://doi.org/10.1021/je970152i
  12. Al-Sahhaf, T. A.; Kapetanovic, E. Fluid Phase Equilb. 1996, 118, 271. https://doi.org/10.1016/0378-3812(95)02849-8
  13. Ali, S. H.; Lababidi, H. M. S.; Merchant, S. Q.; Fahim, M. A. Fluid Phase Equil. 2003, 214, 25. https://doi.org/10.1016/S0378-3812(03)00323-6
  14. Huddleston, J. G.; Willauer, H. D.; Swatloski, R. P.; Visser, A. E.; Rogers, R. D. Chem Commun. 1998, 16, 1765.
  15. Gonzalez, E. J.; Calvar, N.; Gonzalez, B.; Dominguez, A. J. Chem. Thermodyn. 2009, 41, 1215. https://doi.org/10.1016/j.jct.2009.05.008
  16. Chen, N. Y.; Yan, T. Y. Ind. Eng. Chem. Process Des. Dev. 1986, 25, 151. https://doi.org/10.1021/i200032a023
  17. Hombourger, T.; Gouzien, L.; Mikitenko, P.; Bonfils, P. Solvent Extraction in the Oil Industry; Editions Technip: Paris, 2000; p 359.
  18. Meindersma, G. W.; Galan Sanchez, L. M.; Hansmeier, A. R.; de Haan, A. B. Mon. Chem. 2007, 138, 1125. https://doi.org/10.1007/s00706-007-0757-4
  19. Mutelet, F.; Jaubert, J.-N.; Rogalski, M.; Boukherissa, M.; Dicko, A. J. Chem. Eng. Data 2006, 51, 1274. https://doi.org/10.1021/je060033f
  20. Ding, J.; Armstrong, D. W. Chirality 2005, 17, 28.
  21. Earle, M. J.; Esperanca, J. M. S. S.; Gilea, M. A.; Canongia Lopes, J. N.; Rebelo, L. P. N.; Magee, J. W.; Seddon, K. R.; Widegren, J. A. Nature 2006, 439, 831. https://doi.org/10.1038/nature04451
  22. Pandey, S. Anal. Chim. Acta 2006, 556, 38. https://doi.org/10.1016/j.aca.2005.06.038
  23. Seddon, K. R.; Stark, A.; Torres, M.-J. Pure Appl. Chem. 2000, 72, 2275. https://doi.org/10.1351/pac200072122275
  24. Blanchard, L. A.; Brennecke, J. F. Ind. Eng. Chem. Res. 2001, 40, 287. https://doi.org/10.1021/ie000710d
  25. Dilger, H.; Hess, S.; Scheuermann, R.; Vujosevic, D.; McKenzie, I.; Roduner, E. Physica B 2009, 404, 638. https://doi.org/10.1016/j.physb.2008.11.118
  26. Anjan, S. T. Chem. Eng. Prog. 2006, 102, 30.
  27. Deetlefs, M.; Hardacre, C.; Nieuwenhuyzen, M.; Sheppard, O.; Soper, A. K. J. Phys. Chem. B 2005, 109, 1593. https://doi.org/10.1021/jp047742p
  28. Prausnitz, J. M.; Anderson, R. AICHE J. 1961, 7, 96. https://doi.org/10.1002/aic.690070123
  29. Hanke, C. G.; Johansson, A.; Harper, J. B.; Lynden-Bell, R. M. Chem. Phys. Lett. 2003, 374, 85 https://doi.org/10.1016/S0009-2614(03)00703-6
  30. Arce, A.; Earle, M. J.; Rodriguez, H.; Seddon, K. R. J. Phys. Chem. B 2007, 111, 4732. https://doi.org/10.1021/jp066377u
  31. Krummen, M.; Wasserscheid, P.; Gmehling, J. J. Chem. Eng. Data 2002, 47, 1411. https://doi.org/10.1021/je0200517
  32. Zhou, F.; Liang, Y.; Liu, W. Chem. Soc. Rev. 2009, 38, 2590. https://doi.org/10.1039/b817899m
  33. Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S. N. V. K.; Brennecke, J. F. J. Chem. Eng. Data 2004, 49, 954. https://doi.org/10.1021/je034261a
  34. Tang, S.; Baker, G. A.; Zhao, H. Chem. Soc. Rev. 2012, 41, 4030. https://doi.org/10.1039/c2cs15362a
  35. Ngo, H. L.; LeCompte, K.; Hargens, L.; McEwen, A. B. Thermochim. Acta 2000, 357, 97. https://doi.org/10.1016/S0040-6031(00)00373-7
  36. Crosthwaite, J. M.; Muldoon, M. J.; Dixon, J. K.; Anderson, J. L.; Brennecke, J. F. J. Chem. Thermodyn. 2005, 37, 559. https://doi.org/10.1016/j.jct.2005.03.013
  37. Nagpal, J. M.; Rawat, B. S. J. Chem. Technol. Biotechnol. 1981, 31, 146. https://doi.org/10.1002/jctb.280310120
  38. Blanchard, L. A.; Gu, Z.; Brennecke, J. F. J. Phys. Chem. B 2001, 105, 2437. https://doi.org/10.1021/jp003309d
  39. Scammells, P. J.; Scott, J. L.; Singer, R. D. Aust. J. Chem. 2005, 58, 155. https://doi.org/10.1071/CH04272

Cited by

  1. Role of Alkyl Group in the Aromatic Extraction Using Pyridinium-Based Ionic Liquids vol.117, pp.47, 2013, https://doi.org/10.1021/jp409117j
  2. Aliphatic–Aromatic Separation Using Deep Eutectic Solvents as Extracting Agents vol.54, pp.45, 2015, https://doi.org/10.1021/acs.iecr.5b02611
  3. Toward an Understanding of the Mechanisms behind the Formation of Liquid–liquid Systems formed by Two Ionic Liquids vol.8, pp.13, 2017, https://doi.org/10.1021/acs.jpclett.7b01234
  4. Liquid-Liquid Equilibrium Data for the System N-Octane + Toluene + DES at 293.15 and 313.15 K and Atmospheric Pressure vol.52, pp.2, 2018, https://doi.org/10.1134/S0040579518020148
  5. Liquid-liquid equilibria of toluene+n-heptane+{1-benzyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide or 1-benzyl-pyridinium bis(trifluoromethylsulfonyl)imide} vol.35, pp.5, 2018, https://doi.org/10.1007/s11814-018-0031-y
  6. Synthesis, Characterization, and Antimicrobial Toxicity Study of Dicyanamide-Based Ionic Liquids and Their Application to Liquid-Liquid Extraction vol.65, pp.1, 2012, https://doi.org/10.1021/acs.jced.9b00654
  7. Molecular modeling insights in the extraction of benzene from hydrocarbon stream using deep eutectic solvent vol.317, pp.None, 2012, https://doi.org/10.1016/j.molliq.2020.113909
  8. Dearomatization Insights with Phosphonium-Based Deep Eutectic Solvent: Liquid-Liquid Equilibria Experiments and Predictions vol.66, pp.9, 2012, https://doi.org/10.1021/acs.jced.1c00241
  9. Extraction separation of aromatic homologues from n-decane using DMSO: Influence of the alky side chain length vol.166, pp.None, 2022, https://doi.org/10.1016/j.jct.2021.106673